- 1. В
- 2. С
- 3. В
- 4. А 5. Е
- B
 B
 C
 C
 C
 C
 C
 C
 D

- 11. C
- 12. B 13. D
- 14. D
- 15. C
- 16. B
- 17. B 18. D
- 19. E
- 20. B
- 21. C
- 22. A 23. B
- 24. B
- 25. A
- 26. A
- 27. D
- 28. C
- 29. B
- 30. A

- 1. B The probability that Terri wins on her turn is ³/₄ and for Avery is ¹/₄. The probability Terri wins is $\frac{3}{4} + (\frac{1}{4})(\frac{3}{4})(\frac{3}{4}) + (\frac{1}{4})(\frac{3}{4})(\frac{1}{4})(\frac{3}{4})(\frac{3}{4})(\frac{3}{4}) = \frac{12}{13}$
- 2. C Every consecutive 4 powers of i sums to 0, so the whole sum is $i^{2022}+i^{2023}+i^{2024}=-i$
- 3. B $12 + 12 + 24 + 24 + 48 + 48 + 96 + 96 + 192 + 192 = 24(1 + 2 + 4... + 2^4) = (24)(31) = 744.$
- 4. A Since the values are so high, it would be difficult to solve for a_{100} . $a_{101}=a_{100}+a_{99}+1$ and $a_{100}=a_{99}+a_{98}+1$. Plugging a_{100} in gets $a_{101}=2a_{99}+a_{98}+2$. Subtracting over gets the desired value of 2.
- 5. E The sequence classifies as none of the options.
- 6. B Using finite differences, 1: 1, 11, 26, 46, 71
 2: 10. 15. 20. 25
 3: 5, 5, 5
 Since it is constant after 3 differences, the answer is 3.
- 7. C Let $4 + \frac{5}{4 + \frac{5}{4 + \frac{5}{4 + \dots}}} = S$. Then $4 + \frac{5}{s} = S$ and $S^2 4S 5 = 0$ so S = 5, -1. Since S must be positive

- 8. C $\frac{1}{1-r}=4r^2-12r+7$. Multiplying both sides by 1-r and subtracting by 1 gets $-4r^3+16r^2-19r+6=0$. Use rational root theorem to get $r=\frac{1}{2},\frac{3}{2},2$. The last two are extraneous since they exceed 1 so the answer is 2.
- C Let the sides be a-d, a, and a+d. Using the pythagorean theorem gets a²-2ad+d²+a²=a²+2ad+d² or a=4d. The sides are 3d, 4d, and 5d, so using the area gets 6d²=96 gets d=4 and 5d=20.
- 10. D $\frac{1+5i}{3+2i} = \frac{\sqrt{26}}{\sqrt{13}} > 1$. The series diverges.
- 11. C The series telescopes $\frac{1}{n} \frac{1}{n+1}$ so the workers' combined rate is $1 \frac{1}{11} \frac{10}{11}$ blocks per hour. This means it will take 33 hours to finish $(\frac{30}{10})$
- 12. B f(1) + f(-1) = 2046 = 2a(1+4+16+64+256) = 682a. a=3. Plug f(1) in to get 2048b=(511)(3). b= 515. 5+1+5=11.
- 13. D There are 5 single-digit odds so find the 48th digit of the 2-digit odds or the last digit of the 24th 2-digit odd. 11,13,15...57. So the answer is 7.
- 14. D $\frac{a}{1-r} = 6$ and $\frac{a^2}{1-r^2} = 144$ Squaring the first equation and dividing by the second gets $\frac{1-r^2}{(1-r)^2} = \frac{1}{4} = \frac{1+r}{1-r}$ Solving this gets $r = \frac{-3}{5}$ and $a = \frac{48}{5}$
- 15. C The highest and lowest possible scores are 6 and 57, and every score in between is possible, so the 20th number in that list is 25.
- 16. B Chris can get any score between 6 and 57, so 6+7+8+...57=1638.
- 17. B Break it up into $\frac{x2^x}{4^x} + \frac{1}{4^x} = \frac{x}{2^x} + \frac{1}{4^x}$ Solve each one individually. $K = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} \dots$ $\frac{1}{2}K = \frac{1}{4} + \frac{2}{8}$...Subtracting the two gets $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \dots = \frac{1}{2}K$. K = 2. The second part is an infinite geometric series with sum $\frac{4}{3}$. $S = 2 + \frac{4}{3}$ 3S=10.

- 18. D Since RUIWEN is equiangular, it can be an equilateral triangle with 3 equilateral triangles cut out from the corners. Solving for each side of the big equilateral triangle, we get $b^2+b^3=5a$ and $b^2+b=3a$. 3ab=5a. $b=\frac{5}{3}and a=\frac{40}{27}$. The largest side length is $b^3 = \frac{125}{27}$ so 81 times that is 375.
- 19. E Using the infinite geometric series formula, $\frac{1}{1-r}\frac{1}{1-s}\frac{1}{1-t} = \frac{1}{\frac{1}{12}f(1)} = 6$
- 20. B The minimum possible value of a+b+c would be when they are 4, 2, 1 or 1, 2, 4. This would mean n must be at least 5. 1+2+4+5=12.
- 21. C The first circle has radius of 1, meaning an area of π . The second square has side length $\sqrt{2}$, so the second circle has radius of $\frac{\sqrt{2}}{2}$ and area of $\frac{\pi}{2}$ and so on. $\pi + \frac{\pi}{2} + \frac{\pi}{4} \dots = 2\pi$.
- 22. A To go up 6 terms, we multiply by 3, so to go from 9th term to 12th term would be $9\sqrt{3}$.
- 23. B $0+1+2...49=\frac{(50)(49)}{2}=1225.$
- 24. B Factoring $n^2 1$ into (n-1)(n+1). Every other term cancels out.

25. A
$$\frac{2^2}{1\cdot 3} \cdot \frac{3^2}{2\cdot 4} \dots \frac{n^2}{(n-1)(n+1)} = \frac{2\cdot n}{1\cdot (n+1)} = \frac{2n}{n+1} = \frac{200}{101}$$
$$\frac{n^2}{n^2 - 1} = 1 + \frac{1}{n^2 - 1} = 1 + \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1}\right)$$

Thus, the summation is

$$9 + \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} \dots + \frac{1}{8} - \frac{1}{10} + \frac{1}{9} - \frac{1}{11} \right)$$
$$9 + \frac{1}{2} \cdot \left(1 + \frac{1}{2} - \frac{1}{10} - \frac{1}{11} \right) = \frac{531}{55}$$

- 26. A $S = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} \dots S \frac{1}{2}S \frac{1}{4}S = \frac{1}{2} = \frac{1}{4}S$ S = 2.
- 27. D $a_2=5$, $a_5=4$, so $a_8=3$ so the sum of the first fifteen terms is (3)(15)=45.
- 28. C Call the terms a-11,a-9,a-7....a-1,a+1....a+9,a+11. The sum of the terms would be 12a=372, so a=31. The greatest term would be 31+11=42.

29. B
$$\frac{2}{5} + \frac{1}{5} + \frac{1}{10} = \frac{\frac{2}{5}}{1 - \frac{1}{2}} = \frac{4}{5}$$
Since the questions asks for the remainder, it is $\frac{1}{5}$

30. A There are 2 cases.

i) n is odd $\rightarrow \frac{2024}{n} \text{ is an integer}$ $\rightarrow n = 1, 11, 23, 253$ ii) n is even $\rightarrow \frac{2024}{n} \text{ is half of an odd integer}$

$$\rightarrow n = 16 * (1, 11, 23, 253)$$