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# Ans Solution 

1 B In Boolean algebra, we have 

1 + 1 × 1 + 0 = 1 + 1 + 0 = 1 + 0 = 1.  
2 C 𝑆 = {1,2,3} ∪ subset of {4,5,6,7}. There are 24 = 16 different possibilities for the subsets – 

empty set as one of the inequalities is strict. 

3 C 9917 = (100 − 1)17. Only the last two terms of this binomial distribution matters when 

taken mod 1000 since 1002 = 0 (mod 1000). 

(100 − 1)17 ≡ 1700 − 1 ≡ 699 (mod 1000). 

4 C 𝐼: 𝑆 ∈ ℕ  

𝐼𝐼: 𝑆 = ℕ × ℕ = ℕ  

𝐼𝐼𝐼: 𝑆 = ℚ × ℚ = ℕ  

𝐼𝑉: it is well known that ℝ+ is not countable. You can make a bijection from (0,1) to ℝ+ 

by mapping 𝑥 to 
1

𝑥
− 1. 𝑥 Thus, reals from 0 to 1 is not countable. 

𝑉: the unit circle can be mapped to reals from 0 to 2𝜋. Since |𝑉| ≥ |𝐼𝑉|, 𝑉 is also not 

countable. 

5 C From the description 𝐴 ∪ 𝐵 = ℕ. 

𝐼:  𝑓(𝑥) = 1, 𝑔(𝑥) = 0 is a counterexample. 

𝐼𝐼: 𝑓(𝑥) = 0, 𝑔(𝑥) = 0 is a counterexample. 

𝐼𝐼𝐼: Since the union is an infinite set, at least 1 of 𝐴, 𝐵 must be an infinite set. 

𝐼𝑉: Using 𝐼𝐼𝐼, 𝐵 must be an infinite set. 

𝑉: 𝑓(𝑥) = 0, 𝑔(𝑥) = 0 is a counterexample. 

6 D The expression can be rewritten as 𝑎 + (𝑎 + 𝑏) + (𝑎 + 𝑏 + 𝑐) = 30. Since 𝑎, 𝑏, 𝑐 > 0,  
𝑎 < 𝑎 + 𝑏 < 𝑎 + 𝑏 + 𝑐. Thus the number of solutions is equal to the number of increasing 

positive integer triplets (𝑥, 𝑦, 𝑧) that satisfy 𝑥 + 𝑦 + 𝑧 = 30, 𝑥 < 𝑦 < 𝑧.  

We proceed with complimentary counting.  

There are (29
2

) = 406 triplets that satisfy x+𝑦 + 𝑧 = 30. 

There are 3 ⋅ 13 triplets where exactly two numbers are equal. 

There is 1 triplet where all 3 numbers are equal. 

Finally divide by 3! since there are 3! ways to order (𝑎, 𝑏, 𝑐). 
406−39−1

3!
= 61.   

*Alternatively, case work on 𝑎, then 𝑏 will also do the job. 

7 D We have a simple directed graph, so we can generate the adjacency matrix 𝐴 with 

𝐴𝑖,𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Doing this, we get answer choice D. 

8 C First, it is easy to see there is a Hamiltonian Circuit. (Going around in a circle.) There are 

two vertices with odd degree, thus there is a Euler Path, but not an Euler Circuit.  

9 A 𝐼: There is no multiplicative inverse. 

𝐼𝐼:  Satisfies all the conditions. 

𝐼𝐼𝐼: Is not closed under addition.  

𝐼𝑉:  Satisfies all the conditions. 

𝑉: There is no additive inverse. 

10 B The diameter is the longest distance between two vertices. It isn’t too hard to see that the 

longest distance is from 1 to 3. 

11 E Note that 𝑏 → 𝑐
 

⇔ ¬𝑏 ∨ 𝑐. Now, repeatedly using De Morgan’s laws, we get 

 



Open Discrete Math Solutions    2024 MA National Convention 
 
 

 
 

⇔ ¬((𝑎 ∧ (¬𝑏 ∨ 𝑐)) ∨ ¬𝑑), 
 

⇔ ¬(𝑎 ∧ (¬𝑏 ∨ 𝑐)) ∧ 𝑑, 
 

⇔ (¬𝑎 ∨ ¬(¬𝑏 ∨ 𝑐)) ∧ 𝑑, 
 

⇔ (¬𝑎 ∨ (𝑏 ∧ ¬𝑐)) ∧ 𝑑. 
Note that this is not equivalent to answer choice B because of order of logical operations. 

12 C Using the conditions, 𝑓(5) = 1. We proceed with case work on 𝑓(4). 
Case 1: 𝑓(4) = 1. 

𝑓(1), 𝑓(2), 𝑓(3) must contain 2,3. Using PIE, there are 33 − 23 − 23 + 1 = 12 ways to do 

this. 

 

Case 2: 𝑓(4) = 2. 

𝑓(1), 𝑓(2), 𝑓(3) must contain 3. Using PIE, there are 33 − 23 = 19 ways to do this. 

13 B In base 10, the sum of digits preserves modulo 9 since 10𝑛 = 1 (mod 9). Similarly, in base 

5, the sum of digits preserves modulo 4. 
Since 𝑛2 ≡ 𝑛 (mod 4,9) → 𝑛(𝑛 − 1) = 0 → 𝑛 = 0,1 (mod 4,9). There are 2 ⋅ 2 = 4 

possibilities mod 36, namely 0,1,9,28. Checking numbers starting from 28, the smallest 

solution is 45. (452 = 2025, 1405 = 311005) 

14 A A full binary tree is a binary tree where each node has exactly 0 or 2 children.  

The maximum height is when each layer has one node with two edges. Thus, a full binary 

tree with ℎ levels will have 2ℎ − 1 nodes. 𝑀 = 501. 
The minimum number of levels is when everything is as full as possible. If the tree has 10 

levels and is completely full, it contains 1023 nodes. For a tree with 1001 nodes, simply 

remove 11 pairs of nodes from the bottom of the tree. 𝑚 = 10. 

Thus 𝑀 − 𝑚 = 501 − 10 = 491. 

15 C  𝐴: 2  

 

 

 

 

𝐵: Having one group of vertices blue, and the other group red means that the chromatic 

number is 2. 

𝐶: Since each vertex is connected to 2 other vertices, the chromatic number is 3. 

𝐷:  Alternating between red and blue gives a chromatic number of 2. 

16 D There will be 𝑑(𝑛) (number of factors of 𝑛) numbers such that 
𝑛

𝑘
 is an integer (since all 

factors are less than or equal to 𝑛), and ⌊
49

𝑛
⌋ numbers such that 

𝑘

𝑛
 is an integer, with 𝑘 = 𝑛 

being double-counted. Thus, we have 

𝑑(𝑛) + ⌊
49

𝑛
⌋ − 1 = 4 → 𝑑(𝑛) + ⌊

49

𝑛
⌋ = 5. 

We proceed with case work on ⌊
49

𝑛
⌋, noting that 𝑑(𝑛) ≥ 2 for all 𝑛 > 1. 

Case 1: ⌊
49

𝑛
⌋ = 1 → 25 ≤ 𝑛 ≤ 49. 

Thus, 𝑑(𝑛) = 4 → 𝑛 = 𝑝𝑞 or 𝑝3 for primes 𝑝, 𝑞. Checking, 𝑛 = 26, 27,33,34,35,38,39,46 

 

Case 2: ⌊
49

𝑛
⌋ = 2 → 17 ≤ 𝑛 ≤ 24. 

Thus, 𝑑(𝑛) = 3 → 𝑛 = 𝑝2 for prime 𝑝. There are no possible values of 𝑛. 
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Case 3:  ⌊
49

𝑛
⌋ = 3 → 13 ≤ 𝑛 ≤ 16. 

Thus, 𝑑(𝑛) = 2 → 𝑛 = prime. The possible values are 13. 

 

Our total is 8 + 1 = 9. 
17 A 𝐼, 𝐼𝐼: Since 𝑆𝑎 ⊆ 𝑆𝑏 if 𝑎 ≤ 𝑏, both 𝐼, 𝐼𝐼 are true. 

𝐼𝐼𝐼, 𝐼𝑉: |𝑆𝑎| = (2𝑎 + 1)(𝑎 + 1) = 2𝑎2 + 3𝑎 + 1 → |𝑆𝑏| − |𝑆𝑎| = 2𝑏2 − 2𝑎2 + 3𝑏 −
3𝑎 = (𝑏 − 𝑎)(2𝑎 + 2𝑏 + 3)  

𝐼𝐼𝐼: If 𝑏 = 𝑎 + 1, |𝑆𝑏| − |𝑆𝑎| = 2(𝑎 + 𝑏) + 3 < 3(𝑎 + 𝑏) if 𝑎, 𝑏 are large. 

𝐼𝑉:  𝑏 = 2, 𝑎 = 1 is a counterexample. 

  

18 E As 𝑘 grows to infinity, 𝑥 will be all numbers in the form 2𝑎3𝑏. The sum of 
1

𝑥2 is 

(1 +
1

4
+

1

16
… ) (1 +

1

9
+

1

81
… ) =

1

1−
1

4

⋅
1

1−
1

9

=
4

3
⋅

9

8
=

3

2
. However, we need to subtract the 

elements in 𝑆1 since it is the intersection between 𝑆𝑘 and the complement of 𝑆1. 
3

2
−

(1 +
1

4
+

1

16
) (1 +

1

9
) =

3

2
−

21

16
⋅

10

9
=

1

24
. 

19 C It is easy to find an example where 𝐾3,4 has 2 intersections. Thus, the crossing number is 

less than or equal to 2. Now we aim to prove that the crossing number is indeed 2. For the 

sake of contradiction, let the crossing number be 1. (It cannot be 0 since it contains 𝐾3,3) In 

the crossing, there will be 4 vertices involved: 2 from the group of 4, and 2 from the group 

of 3. If we remove one of the vertices from the group of 4 along with all edges connected, 

the crossing number will now be 0 since there are no more intersections. However, since the 

crossing number of 𝐾3,3 = 1, this is a contradiction. 

20 E 𝐼: well known to be non-planar 

 

𝐼𝐼:  planar since there are no intersections as shown below 

 

 

 

 

 

 

 

 

𝐼𝐼𝐼: since it contains 𝐾5, it is non-planar 

𝐼𝑉: planar since there are no intersections 

𝑉: planar since there are no intersections as shown below 

  
21 B 20252 = 454 = 38 ⋅ 54. First, we aim to prove that 𝑥, 𝑦 are both a multiple of 3. It is easy 

to see that if 𝑥 is not a multiple of 3, 𝑥2 = 1 (mod 3). Then if at least one of 𝑥 or 𝑦 isn’t a 

multiple of 3, we get 

𝑥2 + 𝑦2 ≡ 1,2 (𝑚𝑜𝑑 3), 
which is a contradiction.  
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This tells us that 𝑥, 𝑦 are both multiples of 81. Now we need to find the number of lattice 

points with 𝑥2 + 𝑦2 = 54 = 625. This is just the Pythagorean triples with hypotenuse 25, 

which are (7,24,25), (15,20,25). These produce 8 solutions each (±𝑥, ±𝑦), (±𝑦, ±𝑥), and 

the trivial solution (0,25) produces 4. The total is 20.  

22 D First, we calculate the probabilities of each of the scenarios. 

3-people game: 

Draw: 3 (everyone has the same hand) + 6 (everyone has a different hand) =
3+6

27
=

1

3
. 

2 people win/1 person wins: By symmetry, both are 
1

3
.  

2-people game: 

Draw: 
1

3
, Win: 

2

3
 

 

Let 𝐸3 be the expected number of games until a single winner arises in a 3-person game, 

and let 𝐸2 be the expected number of games until a single winner arises in a 2-person game. 

𝐸2 = 𝐸2 ⋅
1

3
+ 1 → 𝐸2 =

3

2
. 

𝐸3 = 𝐸3 ⋅
1

3
+ 𝐸2 ⋅

1

3
+ 1 →

2𝐸3

3
=

3

2
→ 𝐸3 =

9

4
. 

23 B Consider a 5 by 4 grid where 𝑥 is the number of heads, and 𝑦 is the number of tails. This is 

a typical problem where you go up the grid and add up the square from the left and from 

below; however, you cannot hit a point where |𝑥 − 𝑦| ≥ 2 before (5,3). The resulting grid 

will look like this, where the bottom-left corner is (0,0) and the top-right corner is (4,3). 
We only need to look at (4,3) because we can’t reach (5,3) from (5,2). 

 

X 
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8 
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X 

 

X 

 

1 

 

1 

 

X 

 

X 

 

X 
 

24 A There are (6
2
) = 15 possible couples, each with probability 

1

5
⋅

1

5
=

1

25
. The expected number 

of couples is 
15

25
=

3

5
. 

25 B There are 2 cases 

1. The new person becomes a couple 

There are 6 possible couples, each with probability 
2

7
⋅

1

6
. The expected number of couples is 

2

7
. 

2. A couple without the new person 

There are 15 possible couples, each with probability 
1

7
⋅

1

7
. The expected number of couples 

is 
15

49
 

Total =
2

7
+

15

49
=

29

49
. 

26 C If we pick 4 points that form a non-degenerate convex quadrilateral, the intersection of this 

quadrilateral’s diagonals will be an interior intersection. There are (12
4

) = 495 ways to 

choose 4 points. We now remove all the bad selections, which are when 3 or more points 
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are collinear (Note that we can’t pick 4 points that gives a non-degenerate concave 

quadrilateral). We do this with two cases. 

 

Case 1: exactly three points are collinear. 

For each side, we pick 3 points to be collinear. Then we pick a point not on the side as the 

4th point. This gives 

8 (
4

3
) + 7 (

5

3
) + 6 (

6

3
) = 222. 

 

Case 2: all 4 points are collinear. 

This case is straightforward. We compute 

(
4

4
) + (

5

4
) + (

6

4
) = 21. 

 

Putting everything together, we get 495 − 222 − 21 = 252. 
27 A We can simplify the expression into 

≡ 12! (
1

1 ⋅ (−1)
+

1

2 ⋅ (−2)
+

1

3 ⋅ (−3)
+

1

4 ⋅ (−4)
+

1

6 ⋅ (−6)
)  

≡ 12! (−1 − 2−2 − 3−2 − 4−2 − 6−2)  
≡ (−1)(−1 − 2−2 − 3−2 − 4−2 − 6−2)  
≡ 1 + 2−2 + 3−2 + 4−2 + 6−2 (𝑚𝑜𝑑 13), 

where we used Wilson’s theorem to get 12! ≡ −1 (mod 13). Now, using the observation 

that 1 ≡ −12 (mod 13), the expression above is equivalent to  

1 + (−6)2 + (−4)2 + (−3)2 + (−2)2 ≡ 1 + 36 + 16 + 9 + 4 ≡ 1 (𝑚𝑜𝑑 13). 
28 D 1

𝑁
=

1

1050 ⋅
25

(106+1)(104+1)
. Since gcd(10, (106 + 1)(104 + 1)) = 1, the non-repeating part 

has length 50. Now the repeating part is the smallest positive integer 𝑛 that satisfies 

(106 + 1)(104 + 1)| 10𝑛 − 1. Also, since gcd(104 + 1,106 + 1) = 1, we can split the 

equation into 106 + 1|10𝑛 − 1 and 104 + 1|10𝑛 − 1.  
 

Case 1. 104 + 1|10𝑛 − 1 

Noticing that 108 − 1 ≡ 0 (mod 104 + 1), 10𝑛 − 1 ≡ 10𝑛 (𝑚𝑜𝑑 8) − 1 ≡ 0 (mod 104 +
1). 

Therefore, 𝑛 = 0 (mod 8) 

Case 2. 106 + 1|10𝑛 − 1  

Similarly, 10𝑛 − 1 = 10𝑛 (𝑚𝑜𝑑 12) − 1 = 0 (mod 106 + 1) 

Therefore, 𝑛 = 0 (mod 12) 

The smallest multiple of 8 and 12 is 24. 

29 B Let 𝑓(𝑎, 𝑏) =
1

𝑎2𝑏2. The summation we are solving for can be written as ∑ 𝑓(𝑎, 𝑏)𝑎≤𝑏 . We 

can split this up into ∑ 𝑓(𝑎, 𝑏)𝑎<𝑏 + ∑ 𝑓(𝑎, 𝑏) = ∑ 𝑓(𝑎, 𝑏)𝑎<𝑏 +
𝜋4

90
.𝑎=𝑏  

Let ∑ 𝑓(𝑎, 𝑏) = 𝐼𝑎<𝑏 . Due to symmetry (the fact that 𝑓(𝑎, 𝑏) = 𝑓(𝑏, 𝑎)), ∑ 𝑓(𝑎, 𝑏) =𝑎≠𝑏

2𝐼. Thus ∑ 𝑓(𝑎, 𝑏)𝑎,𝑏 = 2𝐼 +
𝜋4

90
. 

Furthermore ∑ 𝑓(𝑎, 𝑏) = ∑ ∑
1

𝑎2𝑏2 = ∑
1

𝑎2 ⋅ ∑
1

𝑏2
∞
𝑏=1 =

𝜋4

36
∞
𝑎=1 .∞

𝑏=1
∞
𝑎=1𝑎,𝑏  

Therefore 2𝐼 +
𝜋4

90
=

𝜋4

36
→ 𝐼 =

3𝜋4

360
. The expression we are solving is 

3𝜋4

360
+

4𝜋4

360
=

7𝜋4

360
. 

30 E 10 ≤
𝑛(𝑛+1)

2
< 100 yields 4 ≤ 𝑛 ≤ 13 AND −14 ≤ 𝑛 < −5. 

 


