- 1. D
- 2. C C C C
- 3.
- 4.
- 5. 6. А
- C A 7. 8.
- В 9.
- 10. D
- 11. C
- 12. B 13. B
- 14. C
- 15. C
- 16. A
- 17. B
- 18. A
- 19. D
- 20. B
- 21. A
- 22. A
- 23. C
- 24. B
- 25. C 26. A
- 27. E
- 28. A
- 29. B
- 30. D

- 1. D The sum of the geometric series is $\frac{1}{1-r}$ where |r| < 1 and $r \neq 0$. When r is negative, this produces the range $(\frac{1}{2}, 1)$. When r is positive, this produces the range $(1, \infty)$. The combined ranges are $(\frac{1}{2}, 1) \cup (1, \infty)$. r = 0 is not a geometric series.
- 2. C Let the first term equal x. Then the sum of the series is $\frac{x}{1-1/x} = \frac{x^2}{x-1}$. The derivative of this is $\frac{(x-2)x}{(x-1)^2}$. The sum has a relative minimum of 4 at x = 2, but the relative maximum at x = 0 is not a valid series since x must have an absolute value greater than 1. Thus, the smallest negative sum is when x approaches -1, where the sum approaches but is not equal to $-\frac{1}{2}$. $-\frac{1}{2} + 4 = \frac{7}{2}$.
- 3. C Let $a_{2n-1} = r^2$. Then $a_{2n} = rs$, $a_{2n+1} = s^2$, and $a_{2n+2} = 2s^2 rs = s(2s r)$. With the initial conditions given, this gives $a_{2n-1} = (n+1)^2$ and $a_{2n} = (n+1)(n+2)$. $\sum_{n=1}^{18} a_n = \sum_{n=2}^{10} (n^2 + n(n+1)) = \sum_{n=2}^{10} (2n^2 + n) = -3 + \sum_{n=1}^{10} (2n^2 + n) = -3 + \frac{10 \cdot 11 \cdot 21}{3} + \frac{10 \cdot 11}{2} = -3 + 770 + 55 = 822.$

4. C
$$h_n = \frac{n}{1+2^{-1}+2^{-2}+\dots+2^{-n}}$$
. The denominator is a geometric series whose sum approaches 2 as *n* grows very large, so $h_n \sim \frac{n}{2}$.

- 5. C The equation will eventually stabilize, since $\frac{5}{4} < 3$. Solving $x = \frac{9}{4}x(1-x)$ gives $1-x = \frac{4}{9}$ and $x = \frac{5}{9}$.
- 6. A $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = \lim_{x \to 0} \frac{\sin x}{x} = 1$, so by the Limit Comparison Test, the series is equivalent to the Basel problem and is thus absolutely convergent.
- 7. C $\sqrt{n+1} \approx \sqrt{n}$ and $\frac{1}{n+2} \approx \frac{1}{n}$ as *n* grows large, so the series is asymptotic to $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ and is thus conditionally convergent.
- 8. A From the given values, $\tan x = 1 \cdot x + \frac{2}{6} \cdot x^3 + \frac{16}{120} \cdot x^5 + \dots = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$ The approximation for tan 1 using the degree-5 Maclaurin series is $1 + \frac{1}{3} + \frac{2}{15} = \frac{22}{15}$, so 15 tan 1 \approx 22.

9. B Note that for $f(x) = px^{4n} + qx^{4n-1} + rx^{4n-2} + sx^{4n-3}$, f(1) = p + q + r + s, f(i) = p - qi - r + si, f(-1) = p - q + r - s, and f(-i) = p + qi - r - si so $r = \frac{f(1) + f(-1) - f(i) - f(-i)}{4}$. For the given function, obviously f(1) = f(i) = 1. $f(-1) = (-2 - i)^8 = (3 + 4i)^4 = (-7 + 24i)^2 = -527 - 336i$. Similarly, $f(-i) = (-1 - 2i)^8 = (-3 + 4i)^4 = (-7 - 24i)^2 = -527 + 336i$. Evaluating the expression gives -168i. The magnitude of this is 168. For the last step in both of those calculations, you may also use the fact that $(a + bi)^2 - (a - bi^2) = 4abi$ or even $(a + bi)^4 - (-a + bi)^4 = 8abi(a^2 - b^2)$.

10. D When x > 0, this is the power series of $\cos \sqrt{x}$, so the radius of convergence is ∞ . Note that when x < 0, the function is $\cosh \sqrt{|x|}$.

- 11. C The Maclaurin series of the denominator is quartic (with coefficient $-\frac{1}{2}$). Polynomial multiplication gives the Maclaurin series of $\ln^2(1-x)$ as $x^2 + x^3 + \frac{11x^4}{12} + O(x^5)$, so the quartic coefficient of the numerator is $-\frac{11}{12}$ and the limit is $\frac{11}{6}$. 11 + 6 = 17.
- The first three derivatives of $\sqrt{1+x}$ are $\frac{1}{2(1+x)^{1/2}}$, $-\frac{1}{4(1+x)^{3/2}}$, and $\frac{3}{8(1+x)^{5/2}}$. 12. В Evaluated at x = 0, the third derivative is $\frac{3}{8}$, so the associated coefficient is $\frac{3/8}{3!} = \frac{1}{16}$.
- Note that this is the integral of tan x, whose Maclaurin series is $x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots$ 13. B from question 8. Integrating this gives the x^6 term of the Maclaurin series of $\ln(\sec x) \operatorname{as} \frac{1}{45}$.
- 14. C $n^n \leq \sum_{m=1}^n m^m \leq n \cdot n^n$. Dividing by n^n and taking the *n*th root, we have $1 \leq n \cdot n^n$. $\frac{1}{n} (\sum_{m=1}^{n} m^m)^{\frac{1}{n}} \le n^{\frac{1}{n}}$. By the Squeeze Theorem, the sum limits to 1 as *n* approaches ∞ . Using Stirling's approximation, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, the desired limit equals *e*.
- By partial fractions, this is equal to $\frac{1}{x-3} \frac{1}{x-2} = \frac{1/2}{1-\frac{x}{2}} \frac{1/3}{1-\frac{x}{2}}$. Converting these to 15. C geometric series gives $\frac{1}{2}\left(1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \cdots\right) - \frac{1}{3}\left(1 + \frac{x}{3} + \frac{x^2}{9} + \frac{x^3}{27} + \cdots\right)$. The numerator of the coefficient of the x^3 term is 81 - 16 = 65.
- 16. A This is the number of solutions in positive integers to the Diophantine equation a + a2b = 100, or the number of non-negative integer solutions to a' + 2b' = 97. a'must be odd, but there are no other constraints. This makes for 49 sequences with $a' \in \{1,3,5,7,\ldots,97\}.$
- Note that $45^2 45 = 2025 45 = 1980$, so the infinite nested radical is 45. 17. В
- This is equivalent to the sum of the first 100 positive integers. $\frac{100 \cdot 101}{2} = 5050$. 18. А
- Let the solutions be a b, a, and a + b. The sum of the solutions is 3a, the sum of 19. D the solutions taken two at a time is $(a - b)a + a(a + b) + (a + b)(a - b) = 3a^2 - a^2 - b^2 - a^2 - b^2 - b^2$ b^2 , and the product of the solutions is $a(a^2 - b^2)$. By Vieta's, $3a = 15\sqrt{3}$ so $a = 15\sqrt{3}$ $5\sqrt{3}$ and $a^2 = 75$. $a^2 - b^2 = 69$ so $b^2 = 6$. $3a^2 - b^2 = 225 - 6 = 219$.
- The Taylor series for sine has an infinite radius of convergence. sin $2024\pi = 0$. 20. В
- The sum of the terms in $\{a, a + b, a + 2b, \dots, a + 10b\}$ is 11a + 55b. Setting this 21. А equal to 2024 and dividing by 11 gives a + 5b = 184. a must be 4 more than a multiple of 5. If a = 5n + 4, then b = 36 - n. n can range from 0 to 35 for a total of 36 solutions.
- 1 + n is asymptotic to n as n grows large. Let $L = \sqrt[2n]{n}$. Then $\ln L = \frac{\ln n}{2n}$, which 22. Α
- tends to 0 as *n* grows large, meaning *L* tends to 1. Note that $\lim_{n \to 0} \sqrt[2n]{1+n} = \sqrt{e}$. The sum is equal to $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1/n}{1+(1+k/n)^2} = \int_0^1 \frac{dx}{1+(1+x)^2} = \int_1^2 \frac{du}{1+u^2} = \arctan 2 \frac{\pi}{4}$. The tangent of this is $\frac{2-1}{1+2\cdot 1} = \frac{1}{3}$. 23. С
- By the Product Rule, the indefinite integral is $\prod_{i=1}^{2024} (x + i)$, which evaluated at the 24. В bounds is $2025! - 2024! = 2024 \cdot 2024!$, which divided by 2025! is $\frac{2024}{2025}$

- 25. C The derivative of $\frac{8n^2}{n^3+512}$ is $-\frac{8n(n^3-1024)}{(n^3+512)^2}$, and so the continuous function has a local maximum when $n^3 = 1024$, or $n = 8\sqrt[3]{2}$. Note the extreme proximity of 1024 to 1000 (compared to 1331), which would correspond to a maximum at n = 10 in the discrete sequence.
- 26. A $(x+4)^2 < 9$ and the interval of convergence is (-7, -1).
- 27. E The summand equals $\frac{(-i)^n}{n!}$, so the sum is $e^{-i} = e^{i \cdot (-1)} = \cos(-1) + i \sin(-1) = \cos(1 i) \sin(1 i) = -is + c$.
- 28. A Note that $\int f(x) dx = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} = \frac{e^{x-1}}{x}$, ignoring the constant of integration. Evaluated at 1, this is e - 1. The limit taken as x approaches 0 equals $\lim_{x \to 0} \frac{e^x}{1} = 1$ by
- 1'Hospital's, so the integral is e 2. 29. B Let $y = \frac{x}{x + \frac{x}{x + \dots}}$. To find the inverse, swap variables so $x = \frac{y}{y + \frac{y}{y + \dots}}$ or $x = \frac{y}{y + x}$. Solving for y gives $y = \frac{x^2}{1 - x} = x^2 + x^3 + x^4 + \dots$. This is all but 1 + x of the second term. Since the continued fraction and part of the infinite series are inverses of each other and $y\left(\frac{1}{2}\right) = \frac{1}{2}$, the sum of their integrals is the area of the square $\left[0, \frac{1}{2}\right] \times \left[0, \frac{1}{2}\right]$, which is $\frac{1}{4}$. Adding the remaining $\int_{0}^{1/2} (1 + x) dx = \frac{5}{8}$ gives a total sum of $\frac{7}{8}$.
- 30. D The evolution of the worm is as follows, where $0\{n\}$ represents *n* copies of 0. Gen. Worm

Worm
(2)
(11)
$1\ 0\ 1\ 0\ 1\ 0$
1010(1)
10100000
10100000
10(1)
1 0{13}
1 0{12}
(1)
0{26}
0{25}
0
[Lifetime = 51]