- 1. D
2. C
- 2. C
3. C
4. C
5. C
- $3.$ 4. C
- 5. C
-
- 6. A
7. C 7. C
8. A
- 8. A
9. B
- 9. B
- 10. D
- 11. C 12. B
- 13. B
- 14. C
- 15. C
- 16. A
- 17. B
- 18. A
- 19. D
- 20. B
- 21. A
- 22. A 23. C
- 24. B
- 25. C
- 26. A
- 27. E
- 28. A
- 29. B
- 30. D

1. D The sum of the geometric series is $\frac{1}{1-r}$ where $|r| < 1$ and $r \neq 0$. When r is negative, this produces the range $\left(\frac{1}{2}\right)$ $\frac{1}{2}$, 1). When r is positive, this produces the range (1, ∞). The combined ranges are $\left(\frac{1}{2}\right)$ $(\frac{1}{2}, 1) \cup (1, \infty)$. $r = 0$ is not a geometric series.

2. C Let the first term equal x. Then the sum of the series is $\frac{x}{1-1/x} = \frac{x^2}{x-1}$ $\frac{x}{x-1}$. The derivative of this is $\frac{(x-2)x}{(x-1)^2}$. The sum has a relative minimum of 4 at $x = 2$, but the relative maximum at $x = 0$ is not a valid series since x must have an absolute value greater than 1. Thus, the smallest negative sum is when x approaches -1 , where the sum approaches but is not equal to $-\frac{1}{2}$, $-\frac{1}{3}$ + 4 = $\frac{7}{3}$. 2 2 2

3. C Let $a_{2n-1} = r^2$. Then $a_{2n} = rs$, $a_{2n+1} = s^2$, and $a_{2n+2} = 2s^2 - rs = s(2s - r)$. With the initial conditions given, this gives $a_{2n-1} = (n + 1)^2$ and $a_{2n} =$ $(n+1)(n+2)$. $\sum_{n=1}^{18} a_n = \sum_{n=2}^{10} (n^2 + n(n+1)) = \sum_{n=2}^{10} (2n^2 + n) = -3 +$ $\sum_{n=1}^{10} (2n^2 + n) = -3 + \frac{10 \cdot 11 \cdot 21}{3}$ $\frac{11.21}{3} + \frac{10.11}{2}$ $\frac{1}{2}$ = -3 + 770 + 55 = 822.

4. C
$$
h_n = \frac{n}{1+2^{-1}+2^{-2}+\cdots+2^{-n}}
$$
. The denominator is a geometric series whose sum approaches 2 as *n* grows very large, so $h_n \sim \frac{n}{2}$.

- 5. C The equation will eventually stabilize, since $\frac{9}{4} < 3$. Solving $x = \frac{9}{4}$ $\frac{9}{4}x(1-x)$ gives $1 - x = \frac{4}{9}$ $\frac{4}{9}$ and $x = \frac{5}{9}$ э
9
- 6. A lim→∞ $\frac{\sin^{\frac{1}{n}}}{1}$ $\frac{\ln \frac{\pi}{n}}{\frac{1}{n}} = \lim_{x \to 0} \frac{\sin x}{x}$ $\frac{dx}{dx} = 1$, so by the Limit Comparison Test, the series is equivalent to the Basel problem and is thus absolutely convergent.
- 7. C $\sqrt{n+1} \approx \sqrt{n}$ and $\frac{1}{n+2} \approx \frac{1}{n}$ $\frac{1}{n}$ as *n* grows large, so the series is asymptotic to $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ \sqrt{n} ∞
n=1 and is thus conditionally convergent.
- 8. A From the given values, $\tan x = 1 \cdot x + \frac{2}{5}$ $\frac{2}{6} \cdot x^3 + \frac{16}{120}$ $\frac{16}{120} \cdot x^5 + \dots = x + \frac{x^3}{3}$ $\frac{x^3}{3} + \frac{2x^5}{15}$ $\frac{2x}{15} + \cdots$. The approximation for $\tan 1$ using the degree-5 Maclaurin series is $1 + \frac{1}{3}$ $\frac{1}{3} + \frac{2}{15}$ $\frac{2}{15} = \frac{22}{15}$ $\frac{22}{15}$ so 15 tan 1 \approx 22.

9. B Note that for $f(x) = px^{4n} + qx^{4n-1} + rx^{4n-2} + sx^{4n-3}, f(1) = p + q + r + s$, $f(i) = p - qi - r + si, f(-1) = p - q + r - s,$ and $f(-i) = p + qi - r - si$ so $r = \frac{f(1) + f(-1) - f(i) - f(-i)}{4}$ $\frac{f(t)-f(t)-f(t)}{4}$. For the given function, obviously $f(1) = f(i) = 1$. $f(-1) = (-2 - i)^8 = (3 + 4i)^4 = (-7 + 24i)^2 = -527 - 336i$. Similarly, $f(-i) = (-1 - 2i)^8 = (-3 + 4i)^4 = (-7 - 24i)^2 = -527 + 336i$. Evaluating the expression gives $-168i$. The magnitude of this is 168. For the last step in both of those calculations, you may also use the fact that $(a + bi)^2 - (a - bi^2) = 4abi$ or even $(a + bi)^4 - (-a + bi)^4 = 8abi(a^2 - b^2)$.

10. D When $x > 0$, this is the power series of cos \sqrt{x} , so the radius of convergence is ∞ . Note that when $x < 0$, the function is $\cosh \sqrt{|x|}$.

- 11. C The Maclaurin series of the denominator is quartic (with coefficient $-\frac{1}{3}$ $\frac{1}{2}$). Polynomial multiplication gives the Maclaurin series of $\ln^2(1-x)$ as $x^2 + x^3 + \frac{11x^4}{43}$ $\frac{1}{12}$ + $O(x^5)$, so the quartic coefficient of the numerator is $-\frac{11}{12}$ $\frac{11}{12}$ and the limit is $\frac{11}{6}$. 11 + 6 = 17.
- 12. B The first three derivatives of $\sqrt{1 + x}$ are $\frac{1}{2(1+x)}$ $\frac{1}{2(1+x)^{1/2}}$, $-\frac{1}{4(1+x)}$ $\frac{1}{4(1+x)^{3/2}}$, and $\frac{3}{8(1+x)^{5/2}}$. Evaluated at $x = 0$, the third derivative is $\frac{3}{8}$, so the associated coefficient is $\frac{3/8}{3!} = \frac{1}{16}$ $\frac{1}{16}$.
- 13. B Note that this is the integral of $\tan x$, whose Maclaurin series is $x + \frac{x^3}{2}$ $rac{x^3}{3} + \frac{2x^5}{15}$ $\frac{2x}{15} + \cdots$ from question 8. Integrating this gives the x^6 term of the Maclaurin series of ln(sec x) as $\frac{1}{\sqrt{2}}$ $\frac{1}{45}$.
- 14. C $n^n \leq \sum_{m=1}^n m^m \leq n \cdot n^n$. Dividing by n^n and taking the *n*th root, we have $1 \leq$ 1 $\frac{1}{n}(\sum_{m=1}^n m^m)^{\frac{1}{n}} \leq n^{\frac{1}{n}}$. By the Squeeze Theorem, the sum limits to 1 as *n* approaches ∞. Using Stirling's approximation, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)$ $\left(\frac{n}{e}\right)^n$, the desired limit equals e.
- 15. C By partial fractions, this is equal to $\frac{1}{x-3} \frac{1}{x-3}$ $\frac{1}{x-2} = \frac{1/2}{1-\frac{x}{2}}$ $1-\frac{x}{2}$ 2 $-\frac{1/3}{1-x}$ $1-\frac{x}{2}$ 3 . Converting these to geometric series gives $\frac{1}{2} \left(1 + \frac{x}{2} \right)$ $\frac{x}{2} + \frac{x^2}{4}$ $\frac{x^2}{4} + \frac{x^3}{8}$ $\frac{x^3}{8} + \cdots \ -\frac{1}{3}$ $rac{1}{3}\left(1+\frac{x}{3}\right)$ $\frac{x}{3} + \frac{x^2}{9}$ $\frac{x^2}{9} + \frac{x^3}{27}$ $\frac{x}{27} + \cdots$). The numerator of the coefficient of the x^3 term is $81 - 16 = 65$.
- 16. A This is the number of solutions in positive integers to the Diophantine equation $a +$ $2b = 100$, or the number of non-negative integer solutions to $a' + 2b' = 97$. a' must be odd, but there are no other constraints. This makes for 49 sequences with $a' \in \{1,3,5,7,\ldots,97\}.$
- 17. B Note that $45^2 45 = 2025 45 = 1980$, so the infinite nested radical is 45.
- 18. A This is equivalent to the sum of the first 100 positive integers. $\frac{100 \cdot 101}{2} = 5050$.
- 19. D Let the solutions be $a b$, a, and $a + b$. The sum of the solutions is 3a, the sum of the solutions taken two at a time is $(a - b)a + a(a + b) + (a + b)(a - b) = 3a^2$ b^2 , and the product of the solutions is $a(a^2 - b^2)$. By Vieta's, $3a = 15\sqrt{3}$ so $a =$ $5\sqrt{3}$ and $a^2 = 75$. $a^2 - b^2 = 69$ so $b^2 = 6$. $3a^2 - b^2 = 225 - 6 = 219$.
- 20. B The Taylor series for sine has an infinite radius of convergence. sin $2024\pi = 0$.
- 21. A The sum of the terms in $\{a, a + b, a + 2b, \dots, a + 10b\}$ is $11a + 55b$. Setting this equal to 2024 and dividing by 11 gives $a + 5b = 184$. a must be 4 more than a multiple of 5. If $a = 5n + 4$, then $b = 36 - n$. *n* can range from 0 to 35 for a total of 36 solutions.
- 22. A $1 + n$ is asymptotic to *n* as *n* grows large. Let $L = \sqrt[2n]{n}$. Then $\ln L = \frac{\ln n}{2n}$, which $2n$ tends to 0 as *n* grows large, meaning *L* tends to 1. Note that $\lim_{n\to 0} \sqrt[n]{1+n} = \sqrt{e}$.
- 23. C The sum is equal to $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1/n}{1 + (1+k)}$ $1+(1+k/n)^2$ $\frac{n}{k} = 0 \frac{1/n}{1 + (1 + k/n)^2} = \int_0^1 \frac{dx}{1 + (1 + k/n)^2}$ $1+(1+x)^2$ 1 $\frac{dx}{(1+(1+x))^2} = \int_1^2 \frac{du}{1+u}$ $1+u^2$ 2 $\frac{1}{1} \frac{du}{1+u^2} = \arctan 2 - \frac{\pi}{4}$ $\frac{n}{4}$. The tangent of this is $\frac{2-1}{1+2\cdot1} = \frac{1}{3}$ $\frac{1}{3}$.
- 24. B By the Product Rule, the indefinite integral is $\prod_{i=1}^{2024} (x + i)$, which evaluated at the bounds is 2025! – 2024! = 2024 ⋅ 2024!, which divided by 2025! is $\frac{2024}{2025}$.
- 25. C The derivative of $\frac{8n^2}{n^3+5n^2}$ $\frac{8n^2}{n^3+512}$ is $-\frac{8n(n^3-1024)}{(n^3+512)^2}$ $\frac{n(n-1024)}{(n^3+512)^2}$, and so the continuous function has a local maximum when $n^3 = 1024$, or $n = 8\sqrt[3]{2}$. Note the extreme proximity of 1024 to 1000 (compared to 1331), which would correspond to a maximum at $n = 10$ in the discrete sequence.
- 26. A $(x+4)^2 < 9$ and the interval of convergence is $(-7, -1)$.
- 27. E The summand equals $\frac{(-i)^n}{n!}$ $\frac{(-1)^n}{n!}$, so the sum is $e^{-i} = e^{i \cdot (-1)} = \cos(-1) + i \sin(-1) =$ $\cos 1 - i \sin 1 = -is + c$.
- 28. A Note that $\int f(x) dx = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)^n}$ $(n+1)!$ $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} = \frac{e^{x}-1}{x}$ $\frac{-1}{x}$, ignoring the constant of integration. Evaluated at 1, this is $e - 1$. The limit taken as x approaches 0 equals $\lim_{x \to 0} \frac{e^x}{1}$ $\frac{1}{1}$ = 1 by l'Hospital's, so the integral is $e - 2$.
- 29. B Let $y = \frac{x}{y}$ $x+\frac{x}{x+1}$ $x + \cdots$. To find the inverse, swap variables so $x = \frac{y}{y}$ $y+\frac{y}{y+1}$ $y + \cdots$ or $x = \frac{y}{y}$ $\frac{y}{y+x}$. Solving for y gives $y = \frac{x^2}{4}$ $\frac{x^2}{1-x} = x^2 + x^3 + x^4 + \cdots$. This is all but $1 + x$ of the second term. Since the continued fraction and part of the infinite series are inverses of each other and $y\left(\frac{1}{2}\right)$ $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$, the sum of their integrals is the area of the square $\left[0, \frac{1}{2}\right]$ $\frac{1}{2} \times \left[0, \frac{1}{2}\right]$ $\frac{1}{2}$, which is $\frac{1}{4}$. Adding the remaining $\int_0^{1/2} (1 + x) dx = \frac{5}{8}$ $\frac{5}{8}$ gives a total sum of $\frac{7}{8}$.
- 30. D The evolution of the worm is as follows, where $0\{n\}$ represents *n* copies of 0.

