- 1. А
- 2. В
- 3. А
- 4. С
- 5. D В 6.
- С 7.
- 8. D
- E 9.
- С 10.
- В 11.
- 12. D
- 13. С
- 14. D
- 15. В
- 16. В
- 17. A
- 18. Е
- 19. Е
- В 20.
- 21. А
- 22. D
- 23. A
- 24. A
- 25. С
- Е 26.
- 27. D
- 28. A
- 29. В
- D 30.

1.	A	$1 - P(\text{all 3 no pants}) = 1 - \frac{6C3}{10C3} = 1 - \frac{20}{120} = \frac{5}{6}$
2.	В	A property of an ellipse is that the sum of the distance from the foci is a constant.
		If $(x, 0)$ is the x –intercept,
		$8 = \sqrt{x^2 + 25} + (x - 3)$
		$11 - x = \sqrt{x^2 + 25}$
		$x^2 - 22x + 121 = x^2 + 25$
		$\rightarrow x = \frac{48}{11}$
		48 + 11 = 59
3.	А	Since $\cos^2(x) = 1 - \sin^2(x)$
		$\int_0^{\frac{\pi}{4}} \cos{(x)}(\sin^3(x) - \sin^5(x)) dx$
		Setting $u = \sin(x)$,
		$I = \int_0^{\frac{\sqrt{2}}{2}} u^3 - u^5 du = \frac{u^4}{4} - \frac{u^6}{6} = \frac{1}{16} - \frac{1}{48} = \frac{1}{24}$
4.	С	As $x \to \infty$, $x^3 - x^2 + 4 \sim \left(x - \frac{1}{3}\right)^3$, $x^3 + 5x^2 - x \sim \left(x + \frac{5}{3}\right)^3$
		Thus, the limit is approximately $\left(x - \frac{1}{3}\right) - \left(x + \frac{5}{3}\right) = -2$
5.	D	Subtracting the two limits gives
		$\lim_{x \to 0} \frac{\sin(x^2) - \sin^2(x)}{x^4}$
		Using the Taylor series approximation of $sin(x) \sim x - \frac{x^3}{6}$,
		$\sin(x^2) \sim x^2 - \frac{x^6}{6}$

		$\sin^2(x) \sim x^2 - \frac{x^4}{3}$
		$\lim_{x \to 0} \frac{\frac{x^4}{3}}{x^4} = \frac{1}{3}$
6.	В	If $a_1a_2 \dots a_n$ is an decreasing integer, $a_na_{n-1} \dots a_1$ has to be a increasing integer except for when $a_n = 0$
		There are a total 2 ⁹ subsets of the set {1,2,3,4,5,6,7,8,9} and each subset corresponds to a decreasing number ending with 0. For example the subset {1,3,5,7} \rightarrow 75310. However, the empty subset does not create a number, thus
		512 - 1 = 511
7.	С	$\frac{x^3}{x+1} = x^2 - x + 1 - \frac{1}{x+1}$
		$\int_0^1 x^2 - x + 1 - \frac{1}{x+1} = \frac{x^3}{3} - \frac{x^2}{2} + x - \ln(x+1)$
		$=\frac{1}{3} - \frac{1}{2} + 1 - \ln(2) = \frac{5}{6} - \ln(2)$
8.	D	Plugging in 25 to $x^2 - x + 1 - \frac{1}{x+1}$,
		$f(x) = 625 - 25 + 1 - \frac{1}{26} \sim 601$
9.	E	$x_1 = 3 - \frac{f(3)}{f'(3)} = 3$
		$x_2 = 3 - \frac{f(3)}{f'(3)} = 3$
10.	С	The polar equation has eccentricity 1, thus a parabola
11.	В	$y = r\sin(\theta) = \sin(\theta) - \sin^2(\theta)$
		The maximum is at the vertex, $\frac{1}{4}$
		The minimum is clearly at $\theta = \frac{3\pi}{2}, -2$

		Difference $=\frac{9}{4}$
12.	D	$x = r\cos(\theta) = \cos(\theta) - \sin(\theta)\cos(\theta) = \cos(\theta) - \frac{1}{2}\sin(2\theta).$
		Taking the derivative gives $-\sin(\theta) - \cos(2\theta) = -\sin(\theta) - 1 + 2\sin^2(\theta)$
		which is 0 at $\sin(\theta) = -\frac{1}{2}$, 1
		Plugging in these values, the minimum is $-\frac{3\sqrt{3}}{4}$, maximum is $\frac{3\sqrt{3}}{4}$
13.	C	Due to symmetry the area common will be 4 times the area of $1 - \sin(\theta)$ from 0 to $\frac{\pi}{2}$.
		$\int_0^{\frac{\pi}{2}} (1 - \sin(\theta))^2 = 1 - 2\sin(\theta) + \sin^2(\theta) = \frac{\pi}{2} - 2 + \frac{\pi}{4} = \frac{3\pi}{4} - 2$
		$\left(\frac{3\pi}{4} - 2\right) * 4 * \frac{1}{2} = \frac{3\pi}{2} - 4$
14.	D	Let the roots be <i>a</i> , <i>b</i> , <i>ab</i> .
		From vietas,
		a+b+ab=5
		ab + ab(a + b) = 6
		Let $a + b = s$, $ab = p$
		s + p = 5
		$p + sp = 6 \rightarrow p + p(5 - p) = 6$
		$p^2 + 6p + 6 = 0$
		$p = -3 \pm \sqrt{3}$
		Since $k = a^2 b^2 = p^2$
		$k = 12 \pm 6\sqrt{3}$
		Sum = 24

15.	В	Let $AB = 3$, $BC = 4$, $AC = 5$. Let M be the midpoint of AB .
		The diameter of the larger circle is $\frac{5}{2} + 2 = \frac{9}{2}$
		The diameter of the smaller circle is $\frac{5}{2} - 2 = \frac{1}{2}$
		$\frac{81-1}{16} = 5$
		10
16.	В	Since $p_i + p_{i+1} + p_{i+2} = 0 \pmod{3}$
		Either one of the three has to be a multiple of 3 or $p_i = p_{i+1} = p_{i+2} \pmod{3}$
		Since there is only multiple of 3 that is prime $(3,5,7)$ is a triplet and for the second
		case, we only have to check $(a, a + 6, a + 12)$ since all primes are odd other than 2. Checking this case, there is only 1 triplet (47, 53, 59).
17.	A	The ratio of the probability that Timmy wins to the probability that Edward wins is proportional to their chances
		$\frac{5}{10}:\frac{4}{10}=5:4$
		Thus, $\frac{5}{5+4} = \frac{5}{9}$
18.	E	Expected number $=\frac{1}{p}$ since this is a geometric distribution, $\frac{1}{\frac{9}{10}} = \frac{10}{9}$
19.	E	$f(x) + g(x) = x^2 + 4x + c_1$
		$f(x)g(x) = 2x^3 + 2x^2 + 4x + c_2$
		Plugging in $x = 0$,
		$c_1 = 2$
		$c_2 = -8$
		Also since the product is degree 3 and sum is degree 2, either f is a quadratic and g is linear or vice versa.
		Case 1. $f(x) = x^2 + ax + 4$, $g(x) = 2x - 2$

		If this is true, $a = 2$. Since $(x^2 + 2x + 4)(2x - 2) = (2x^3 + 2x^2 + 4x - 8)$, this
		case works.
		Case 2. $f(x) = 2x + 4$, $g(x) = x^2 + ax - 2$
		If this is true $a = 2$, Since $(x^2 + 2x - 2)(2x + 4) \neq 2x^3 + 2x^2 + 4x - 8$, this case does not work.
		f(1) = 7, g(-1) = -4
		$\rightarrow 3$
20.	В	$\int_0^1 \sqrt{4-x^2}$
		Letting $x = 2\sin(u)$
		$\int_0^{\frac{\pi}{6}} 4\cos^2(u) = 2 + 2\cos(2u) = 2u + \sin(2u) = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$
21.	А	Using the shell method
		$\frac{V}{2\pi} = \int_0^1 (2-x)\sqrt{4-x^2} = 2A - \int_0^1 x\sqrt{4-x^2}$
		The second integral is a simple u-sub with $u = x^2$
		$\frac{1}{2}\int_0^1 \sqrt{4-u} = \frac{1}{3}\left(2-\sqrt{3}\right) = \frac{8}{3} - \frac{3\sqrt{3}}{3} = \frac{8}{3} - \sqrt{3}$
22.	D	Since $2047 = 2^{11} - 1$ has 11 digits, we just have to choose 3 of the 11 digits
		11 <i>C</i> 3 = 165
23.	А	Similarly to base 10, the sum of digits modulo 7 is conserved in base 8.
		$8^{n}a_{n} + 8^{n-1}a_{n-1} + \dots + 8a_{1} + a_{0} = a_{n} + a_{n-1} + \dots + a_{1} + a_{0} \pmod{7}$
		$2024 + 19 = 6 \pmod{7}$
		Out of the answer choices 1168 is the only number mod 7.
24.	A	$\int_{\frac{1}{2}}^{1} -\ln(x) + \int_{1}^{2} \ln(x) = -\frac{1}{2}\ln(2) + \frac{1}{2} + 2\ln(2) - 1 = \frac{3}{2}\ln(2) - \frac{1}{2}$

25.	С	Graphing $ \ln(x) $, the smallest root must be between 0 and 1 and the other two must
		be greater than that since it crosses through a linear graph 3 times.
		Let the 3 roots be $r, 2r, 3r$.
		$-\ln(r) = ar + b$
		$\ln(2r) = 2ar + b$
		$\ln(3r) = 3ar + b$
		Subtracting the last 2 equations,
		$\ln\left(\frac{3}{2}\right) = ar$
		Subtracting the first 2 equations
		$\ln(2r^2) = ar = \ln\left(\frac{3}{2}\right)$
		Thus, $r^2 = \frac{3}{4} \to r = \frac{\sqrt{3}}{2} \to 6r = 3\sqrt{3}$
26.	E	Case 1: first digit is the max
		If the first digit is n , there are n choose 2 ways to get the last 2 digits
		Using hockey stick 2 <i>C</i> 2 + 3 <i>C</i> 2 9 <i>C</i> 2 = 10 <i>C</i> 3 = 120
		Case 2: second digit is the max
		If the second digit is n, there are $(n - 1)n$ ways to choose the first and last digit
		Note that this is just twice the first case $= 240$
		Case 3: third digit is the max
		If the last digit is n , there are $n - 1$ choose 2 ways to get the first 2 digits
		Using hockey stick, the sum is $9C3 = 84$
		120 + 240 + 84 = 444
27.	D	To get to the form $n^2/5^n$ we will take the derivative of the equation given
		$1 + 2x + 3x^2 \dots = \frac{1}{(1 - x)^2}$

		Multiplying both sides by <i>x</i> ,
		$x + 2x^2 + 3x^3 \dots = \frac{x}{(1-x)^2}$
		Taking the derivative of both sides,
		$1 + 4x + 9x^2 \dots = \frac{1+x}{(1-x)^3}$
		Substituting $x = \frac{1}{5}$ gets
		$1 + \frac{4}{5} + \frac{9}{25} \dots = \frac{75}{32}$ which is 5 times the equation given,
		15 + 32 = 47
28.	А	Using law of sines on triangle XAZ,
		$[XAZ] = AX \cdot AZ \cdot \frac{\sin(\theta)}{2}$
		$[ABC] = AB \cdot AC \cdot \frac{\sin(\theta)}{2}$
		$\frac{[XAZ]}{[ABC]} = \frac{AX}{AB} \cdot \frac{AZ}{AC} = \frac{k}{(k+1)^2}$
		Using this on triangle YBZ, ZCX
		$\frac{3k}{(k+1)^2} = \frac{1}{4}$
		$\rightarrow k^2 - 10k + 1 = 0 \rightarrow k = 5 \pm \sqrt{24}$
29.	В	Substituting $x = 0, y = 0, f(0) = 0$
		Also, using the definition of derivatives,
		$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{f(h) - xh}{h} = -x + c$
		Thus, $f(x) = -\frac{x^2}{2} + cx$
		Since $f'(1) = 1, -1 + c = 1 \rightarrow c = 2$

		$f(x) = -\frac{x^2}{2} + 2x \to f(1) = \frac{3}{2}$
30.	D	Substituting $\frac{1}{x}$ for x
		$f\left(\frac{1}{x}\right) + 2f(x) = \frac{1}{x} + 3$
		Solving this system of equation for $f(x)$,
		$f(x) + 2\left(\frac{1}{x} + 3 - 2f(x)\right) = x + 3$
		$3f(x) = \frac{2}{x} + 3 - x = \frac{-x^2 + 3x + 2}{x}$
		The roots are at
		$\frac{3\pm\sqrt{17}}{2}\to 22$