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Let {x} = x — [x] denote the fractional part of x, and let log(x) = log;, x

Then, the numbers {log(1)}, {log(2)}, {log(3)} ..., {log(9999)} are listed from least to greatest. (In case of a
tie, the numbers are listed from smallest argument to largest argument of the logarithm)

To clarify, the first few numbers are {log(1)}, {log(10)}, {log(100)}, {log(1000)}, {log(1001)} ...
If the position of a number is defined as the leftmost being 1, and the rightmost being 9999,

Let A = the position of {log(24)}

Let B = the position of {log(2024)}

Let C = the argument of the logarithm in the 24™ position

SubmitA+ B + C.
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For the following questions, let the value of the limit be —1 if the limit does not exist. (Consider co, —co to be
the same thing as DNE)

A:
lim x (\/4x2 +1-4x2 - 1)
X—00
B:
In (cos(2x))
im——
x-0 In (cos(x))
C:
1 + xsin(x)
x5 3 + x sin(x)
D:
. Vn2—14vVn2—4+vn2 -9+ +n?2—(n—1)>2
lim >
n—-oo n
E:
2x% + 3sin(x)
m
X—00 x2
Submit ABCDE.
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Consider the polynomial f(x) = x* — 4x3 + x? + 5x — 1L withreal roots r; < 0 <1, <13 <1, < 4.
Let A = (7‘1 + 1'2)(7‘3 + T4) + (T1 + rg)(rz + T'4) + (T‘l + T'4)(T'2 + 7'3)

Let B = (7'1 + 7'2 + T3)(T1 + 7'2 + T‘4)(T‘1 + 7‘3 + T‘4)(T‘2 + 7‘3 + T4_)

LetC:41+1+1+1

-1 4—T2 4—T3 4—T4

Let D = T1

Submit ABCD.
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Consider the polynomial f(x) = x* — 4x3 + x? + 5x — L withreal roots r; < 0 <71, <13 <1, < 4.
LetA=(r + 1)+ 1) + ( +13)(rp + 1) + (. + 1) (2 +73)

LetB=(r+n+rn)m+n+rn)+rn+n)+rs+rn)

LetC = ——+—+——+—

-1 4-1y 4-13 4—1y

Let D = ™
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LetN=23-3-5-6
Let A = the number of positive integral factors of N
Let B = the number of positive integers less than 2024 that are relatively prime to N

If% = the ratio of the sum of the positive integral factors of N that are a multiple of 12 to the sum of the
positive integral factors of N that are a multiple of 6 in simplest form.

LetC =m+n.

If d4, d, are positive integral factors of N

Let D = the number of distinct possible values for %
2

SubmitA+ B + C + D.
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Let R be the region bounded by y = 0 and y = —x% + 10x — 21

Let = = the area of R in simplest form.
A=m+n

Let B = the trapezoidal approximation of R using 4 equal subintervals in simplest form.

Let pr_ﬁ be the minimum distance between a point on R and y = x in simplest form

C=p+q+r
Let uT\/En = the volume of the shape when R is rotated around y = x in simplest form
D=u+v+w
SubmitA+ B+ C+D.
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A piecewise function that is differentiable everywhere is given by:
—x3 —Ax?+Bx+5 ifx <-2
fx) = Cx?>+Ax +7 if-2<x<4
Cx3+Bx?+31 if4<x
for unique values of 4, B, and C.

g(x) = D|x| + arctan|x] is differentiable everywhere for a unique value of D.

Submit ABCD.
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Let f(x) = :—23; and g(x) = vVx arctanx

Let A = f'(0)

Let B = f"(0)

LetC = Jg(r)h g'(x)

Let D = m +n, where lim, g (x) = — = in simplest form
x—

SubmitA+ B + C + D.
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Let f(x) = 11_+—23; and g(x) = vVx arctanx
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Consider the fully simplified expansion of
(w+x+ 2y —32)8
Let A be the sum of the coefficients
Let B be the number of terms
Let C be the number of terms such that the exponent on x is greater than the exponent on y.
Let D be the number of terms with a negative coefficient

SubmitA+ B + C + D.
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Let A = minimum value of the function a(x) = x? — 100x + 2024

2x

Let B = minimum value of the function b(x) = =1

Let ¢ = minimum value of the function c(x) = x® — 3x2 — 9x + 4 over the range [—2,5]
Let D = minimum value of the function d(x) = [x — 1| + |x — 2| + --- + |x — 20|

SubmitA+ B+ C + D.
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Let A = minimum value of the function a(x) = x? — 100x + 2024

2x
x2+1

Let B = minimum value of the function b(x) =
Let ¢ = minimum value of the function c(x) = x3 — 3x2 — 9x + 4 over the range [—2,5]
Let D = minimum value of the function d(x) = |[x — 1| + |x — 2| + --- + |x — 20|
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Let P = (a, b) be a point on the graph of (x — 3)? + (y — 4)? = 4.
Let H = the maximum value of a, let h = the minimum value of a, let K = the maximum value of b, let k =
the minimum value of b.
A=H+h+K+k
Let B = the sum of all distinct values of a where point P lies on the line y = x
Let N = the maximum value of a? + b?, let n = the minimum value of a? + b?
C=N+n

Let O be the circle (x + 1)? + (y + 1)? = r. Given the two circles intersect,

Let Q = the maximum value of r, let ¢ = the minimum value of r
D=Q+q

SubmitA+ B+ C + D.
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The nt" anti-Chebyshev expansion is defined as
cos™(x) = ang + ayq cos(x) + a, ; cos(2x) + -+ + a, ,cos (nx)

For example, since

1 + cos(2x
cos?(x) = #
2
1
azjo == E, a2,1 == 0, az’z == E, a2’3 == 0,
If a2g+a?, +a}, +aZ;+a2,= % in simplest form, let 4 = m + n. Hint: cos(x) = 2 +Ze—
Let B =
A2n,0
4Tl
) n=0
Given
n
2 2n — .
cos“™(x) dx = = ayno
0 2 '
Submit AB.
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All answers to these integrals are written in simplest form, all lowercase variables are integers, and all
arguments of logarithms are minimized.

Let A = a; + a, + asz, where

fl X ax =
0o X3+1 —azna3

Let B = by + b,, where

1
b
fX\/l—deXzb—l
0 2

Let C = ¢q + ¢, + c3, Where

e
f 4XInXdX = c; + cye + cze?
1

Let D = d; + d,, where
fz X% X =d,nd
_— — n
L, X2—-X-6 teTe

SubmitA+ B + C + D.
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All answers to these integrals are written in simplest form, all lowercase variables are integers, and all
arguments of logarithms are minimized.

Let A = a; + a, + a3, where

fl Xy =
0o X3+1 —azna3

Let B = b, + b,, where

1
b
JX\/l—XZdXzb—l
0 2

Let C = c; + ¢, + c3, Where

e
f 4XInX dX = ¢; + cye + cze?
1

Let D = d; + d,, where
JZ X% X =dind
— o n
L X2—-X-6 reTe

SubmitA+ B + C + D.



Mu School Bowl
Test #812
Question #12

Mu School Bowl
Test #812
Question #12



#12 Mu School Bowl
MAG® National Convention 2024

Consider the graph of 2x + 3y —1)(3x + 2y + 6) = k.
Let A = the unique value of k for which this is not a hyperbola.

Let B = Given an appropriate k that results in the graph passing through the origin, find the slope of the
tangent line to the graph at the origin.

A 20-foot ladder is leaning against a wall. The top of the ladder is moving down the wall at a constant rate of
4 ft/min, and the bottom of the ladder is sliding directly away from the wall on the flat floor. At a particular
time ¢, the top of the ladder is 16 feet from the ground.

Let C = the distance (in feet) from the wall to the bottom of the ladder at time t.

Let D = the rate (in ft/min) at which the base of the ladder is sliding away from the wall at time ¢.

Submit A + BCD.
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LetA =

Let B =

LetC =

LetD =

SubmitA+ B + C + D.

2
dx
fl +x2+x+1

2
f 3 4 42 dx
1 x> +xc+x+1

2
e
1 X3 +x2+x+1

dx

2
flx3+x2+x+1
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SubmitA+ B + C + D.

2
dx
f1x3+x2+x+1
2

Jlx3+x2+x+1

dx

2
dx
f1x3+x2+x+1

2
J 3 4 42 dx
1 x> +xc+x+1



Mu School Bowl
Test #812
Question #14

Mu School Bowl
Test #812
Question #14



#14 Mu School Bowl
MAG® National Convention 2024

Sock is interested in the sequence a,, b,, such that (1 + \/f)n = a,, + b,\/2 wWhere a,, b, are integers.

LetA = limZ
n—oo Un
LetB = Z?lozlz_z

Another sequence Sock likes is the recursive sequence cy, = 0,¢; = 0,¢,, = Cp_1 + 2¢p_5 + 2.

LetC = lim &

n-oo Cn
LetD = Y% =
€ - 2n=1 3n

SubmitA+ B+ C + D.
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