Mu Bowl Solutions

C: $\lim_{x \to \infty} x \sin(x)$ could range anywhere from 0 to infinity depending on the value of x. Thus, the limit does not exist and $C = -1$. D: $\lim_{n\to\infty}\sum$ $\sqrt{n^2 - i^2}$ $\frac{1}{n^2}$ 1 \boldsymbol{n} $\frac{i}{1-(\frac{i}{2})}$ \boldsymbol{n}) 2 $=$ $\int \sqrt{1-x^2} =$ π 4 1 0 $n-1$ $i=1$ E: $-1 \leq \sin(x) \leq 1$ lim
∗→∞ $2x^2 - 3$ $\frac{1}{x^2}$ = 2 ≤ $\lim_{x\to\infty}$ $2x^2 - 3\sin(x)$ $\frac{1}{x^2}$ ≤ $\lim_{x\to\infty}$ $2x^2 + 3$ $\frac{1}{x^2} = 2$ Thus, E Final: 1 2 \cdot 4 \cdot (-1) \cdot π 4 \cdot 2 = $-\pi$ $2 \mid -154 \mid A$: $(r_1 + r_2)(r_3 + r_4) + (r_1 + r_3)(r_2 + r_4) + (r_1 + r_4)(r_2 + r_3)$ $= 2(r_1r_2 + r_1r_3 + r_1r_4 + r_2r_3 + r_2r_4 + r_3r_4) = 2 \cdot 1 = 2$ B: $r_1 + r_2 + r_3 + r_4 = 4 \rightarrow$ $(4 - r_1)(4 - r_2)(4 - r_3)(4 - r_4) = f(4) = 256 - 256 + 16 + 20 - 1 = 35$ C: $f(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)$ $\ln(f(x)) = \ln(x - r_1) + \ln(x - r_2) + \ln(x - r_3) + \ln(x - r_4)$ $f'(x)$ $f(x)$ = 1 $x - r_1$ + 1 $x - r_2$ + 1 $x - r_3$ + 1 $x - r_4$ $f'(4)$ $f(4)$ = $256 - 192 + 8 + 5$ $256 - 256 + 16 + 20 - 1$ = 77 $\frac{1}{35}$ = 11 5 D: A root that should be tested with the Rational Root Theorem is −1. $f(-1) = 1 + 4 + 1 - 5 - 1 = 0$ So -1 is the negative root. Final: (note that $BC = f'(4)$) $2 \cdot 35 \cdot$ 11 5 \cdot (-1) = -154 3 | 734 | $N = 2$ $3 \cdot 3 \cdot 5 \cdot 6 = 2^4 \cdot 3^2 \cdot 5$ A: $(4 + 1)(2 + 1)(1 + 1) = 30$

$$
(2+3\frac{dy}{dx})(3x+2y+6)+(2x+3y-1)(3+2\frac{dy}{dx})=0
$$

\n $x = y = 0 \rightarrow (2+3\frac{dy}{dx}) \cdot 6 - (3+2\frac{dy}{dx}) = 0$
\n $12+18\frac{dy}{dx} - 3 - 2\frac{dy}{dx} = 0$
\n $6\frac{dy}{dx} = -\frac{9}{16}$
\nC:
\nThe other leg of a right triangle with hypotenuse 20 and one leg 16 is 12.
\nD:
\nDifferentiating the Pythagorean Theorem, $aa' + bb' = cc'$. The ladder is not changing length, so $aa' = -bb'$.
\n $a = 12, b = 16, b' = -4 \rightarrow 12a' = 64 \rightarrow a' = \frac{16}{3}$
\nFinal:
\n $0 + (-\frac{9}{16}) \cdot 12 \cdot \frac{16}{3} = -36$
\n $- \ln(\frac{5}{3})$
\n $\begin{array}{r} 5 \text{Sum} = \frac{1}{\frac{24x^4 + 3x^3 + 2x^2 + x}{x^2 + x^2 + x + 1} = 4x - 1 - \frac{2x}{x^2 + 1} + \frac{1}{x + 1} \\ = 2x^2 - x - \ln(x^2 + 1) + \ln(x + 1) \\ = 5 - \ln(5) + \ln(2) + \ln(3) - \ln(2) = 5 - \ln(\frac{5}{3}) \end{array}$
\n14 $\frac{19}{4}$
\nA:
\nWriting the sequences recursively,
\n $+ \sqrt{2}$
\nLet $\lim_{n \to \infty} \frac{a_n}{b_n} = S$
\n $\frac{a_n}{b_n} = \frac{a_{n-1} + 2b_{n-1}}{a_{n-1} + b_{n-1}} = \frac{(\frac{a_{n-1}}{b_{n-1}}) + 2}{(\frac{a_{n-1}}{b_{n-1}}) + 1}$
\n $S = \frac{5 + 2}{5 + 1} \rightarrow S = \sqrt{2}$
\nB:
\n $a_n = \frac{(1 + \sqrt{2})^n + (1 - \sqrt{2})^n}{2}$
\nSubstituting this in,<

