Mu Bowl Solutions

#	Answer	Solution
0	3717	From 1 to 9, $\{\log(x)\} = \log(x)$
		From 10 to 99, $\{\log(x)\} = \log\left(\frac{x}{10}\right)$
		From 100 to 999, $\{\log(x)\} = \log\left(\frac{x}{100}\right)$
		From 1000 to 9999, $\{\log(x)\} = \log\left(\frac{x}{1000}\right)$
		Because log (x) is increasing, ordering log (x) is equal to ordering x.
		A: For these questions, we will count how many 'n' digit numbers are less than the value given
		1-9: 1-2 > 2
		$10-99: 10-23 \rightarrow 14$ $100-999: 100-239 \rightarrow 140$
		1000-9999: 1000 – 2399 -> 1400
		1400+140+14+2=1556
		В:
		1-9: 1-2 ->2
		$10-99: 10-20 \rightarrow 11$ $100-999: 100-202 \rightarrow 103$
		$1000-9999: 1000-2023 \rightarrow 1024$
		2+11+103+1024 = 1140
		D: 1141 C:
		the first few numbers are
		1, 10, 100, 1000, 1001 – 1009, 101, 1010, 1011-1019: is the 24^{m} number
		Final:
		1557 + 1141 + 1019 = 3717
1	$-\pi$	A: $\frac{x((4x^2+1) - (4x^2-1))}{\sqrt{4x^2-1} + \sqrt{4x^2+1}} = \frac{2x}{2x+2x} = \frac{1}{2}$
		B:
		$\ln(1-x) \sim -x$
		$\ln(\cos(2x)) = \ln(1 - \sin^2(2x))$ $\ln(\cos(x)) = \ln(1 - \cos^2(x))$
		$\ln(\cos(2x)) - \sin^2(2x)$
		$\frac{1}{\ln(\cos(x))} = \frac{1}{-\sin^2(x)} = 4$

C: $\lim x \sin(x)$ could range anywhere from 0 to infinity depending on the value of *x*. Thus, the limit does not exist and C = -1. D: $\lim_{n \to \infty} \sum_{i=1}^{n-1} \frac{\sqrt{n^2 - i^2}}{n^2} = \frac{1}{n} \cdot \sqrt{1 - \left(\frac{i}{n}\right)^2} = \int_0^1 \sqrt{1 - x^2} = \frac{\pi}{4}$ E: $-1 \le \sin(x) \le 1$ $\lim_{x \to \infty} \frac{2x^2 - 3}{x^2} = 2 \le \lim_{x \to \infty} \frac{2x^2 - 3\sin(x)}{x^2} \le \lim_{x \to \infty} \frac{2x^2 + 3}{x^2} = 2$ Thus, E =Final: $\frac{1}{2} \cdot 4 \cdot (-1) \cdot \frac{\pi}{4} \cdot 2 = -\pi$ 2 -154A: $(r_1 + r_2)(r_3 + r_4) + (r_1 + r_3)(r_2 + r_4) + (r_1 + r_4)(r_2 + r_3)$ $= 2(r_1r_2 + r_1r_3 + r_1r_4 + r_2r_3 + r_2r_4 + r_3r_4) = 2 \cdot 1 = 2$ B: $r_1 + r_2 + r_3 + r_4 = 4 \rightarrow$ $(4 - r_1)(4 - r_2)(4 - r_3)(4 - r_4) = f(4) = 256 - 256 + 16 + 20 - 1 = 35$ C: $f(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)$ $\ln(f(x)) = \ln(x - r_1) + \ln(x - r_2) + \ln(x - r_3) + \ln(x - r_4)$ $\frac{f'(x)}{f(x)} = \frac{1}{x - r_1} + \frac{1}{x - r_2} + \frac{1}{x - r_3} + \frac{1}{x - r_4}$ $\frac{f'(4)}{f(4)} = \frac{256 - 192 + 8 + 5}{256 - 256 + 16 + 20 - 1} = \frac{77}{35} = \frac{11}{5}$ D: A root that should be tested with the Rational Root Theorem is -1. f(-1) = 1 + 4 + 1 - 5 - 1 = 0So -1 is the negative root. Final: (note that BC = f'(4)) $2 \cdot 35 \cdot \frac{11}{5} \cdot (-1) = -154$ $N = 2^3 \cdot 3 \cdot 5 \cdot 6 = 2^4 \cdot 3^2 \cdot 5$ 3 734 A: (4+1)(2+1)(1+1) = 30

		B: $lcm(2,3,5) = 30$
		$\phi(30) = 30 \cdot \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{4}{2} = 8$
		$\varphi(30) = 30 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3$
		$2024 = 30 \cdot 67 + 14$
		$67 \times 8 \pm 4 = 540$
		C:
		$(2^2 + 2^3 + 2^4)(3 + 3^2)(1 + 5)$ 14
		$\frac{1}{(2+2^2+2^3+2^4)(3+3^2)(1+5)} = \frac{1}{15}$
		14 + 15 = 29
		D:
		Let $v_p(n)$ be the maximum power of p that divides n
		$-4 \le v_2(n) \le 4$
		$-2 \le v_3(n) \le 2$
		$-1 \le v_5(n) \le 1$
		There are $9 \cdot 5 \cdot 3 = 135$ possibilities for $\frac{a_1}{d_2}$.
		Final:
4	610	30 + 540 + 29 + 135 = 734
4	019	A. 2 32
		$\frac{1}{3}(4)(2^2) = \frac{1}{3} \to 35$
		B:
		$-x^2 + 10x - 21 = 4 - (x - 5)^2$
		$\frac{1}{2}(y(3) + 2y(4) + 2y(5) + 2y(6) + y(7)) = 16 - \frac{1}{2}(4 + 2 + 0 + 2 + 4)$
		- 10
		- 10
		C:
		The point with the minimum distance will have a tangent line parallel to $y =$
		x
		$-2a + 10 = 1 \rightarrow a = \frac{9}{-2}$
		2 2
		Point: $\left(\frac{1}{2}, \frac{1}{4}\right)$
		Applying point to line,
		$\frac{9}{2} - \frac{15}{4} = 3 = 3\sqrt{2}$
		$\frac{2}{\sqrt{2}} = \frac{1}{4\sqrt{2}} = \frac{1}{8} \rightarrow 13$
		D: Centroid of R :
		$(5\frac{2}{3},4) - (5\frac{8}{3})$
		$(3, \overline{5}, \overline{5}) = (3, \overline{5})$
		$5 - \frac{8}{5} 32$ 17 $\sqrt{2}$ 544 $\sqrt{2}$
		$2\pi RA = 2\pi \cdot \frac{3}{\sqrt{2}} \cdot \frac{3}{3} = \pi \cdot \frac{5}{5} \cdot 32 \frac{3}{3} = \frac{15}{15} \sqrt{2} \rightarrow 561$
		Final:

		35 + 10 + 13 + 561 = 619
5	4	Using continuity for both points and differentiability for the first,
		$a+b+2c=3 E_1$
		3a + b + 4c = 12 E ₂
		$a - 4b - 12c = 6 E_3$
		$E_2 - E_1$ gives $A + C = \frac{1}{2}$. $E_2 - 3E_1$ gives $B + C = -\frac{1}{2}$. $E_1 - E_3$ gives $5B + \frac{1}{2}$
		$14C = -3$, so $3B + 12C = 0$ and $B = -4C$. Thus, $B = -2$ and $C = \frac{1}{2}$, so
		A = 4.
		The only issue with differentiability happens when the arguments of the
		absolute value is 0, and when it isn't, it does not affect the differentiability.
		Thus,
		$\frac{d}{dx}[h(x)]$ at $0^+ = \frac{d}{dx}[h(x)]$ at 0^-
		At 0^+
		$h(x) = Dx + \arctan(x), h(0) = D + 1$ At 0 ⁻
		$h(x) = -Dx - \arctan(x)$, $h'(0) = -D - 1$
		Since
		D + 1 = -D - 1 $D = -1$
		Final:
		$4 \cdot (-2) \cdot \frac{1}{-} \cdot (-1) = 4$
6	21	We can write $f(x)$ as an infinite geometric series with common ratio 2x and
		first term $1 + x$. $f(x) = (1 + x) + 2x(1 + x) + 4x^2(1 + x) + 8x^3(1 + x) +$
		$\dots = 1 + 3x + 6x^2 + 12x^3 + 24x^4 + \dots 3(2)^{n-1}x^n.$
		Δ ·
		$f'(0) = 3 + 12(0) + 36(0)^2 + \dots = 3$
		B:
		$f''(0) = 12 + 36(0)^2 + 96(0)^3 + \dots = 12$
		C: From the Maclaurin series, $\arctan x = x - \frac{x^3}{3} + \frac{x^3}{5} - \frac{x^7}{7} + \cdots, g(x) = x - \frac{x^3}{3} + \frac{x^3}{5} - \frac{x^7}{7} + \cdots$
		$\frac{x^2}{2} + \frac{x^3}{5} - \frac{x^4}{7} + \cdots$ and $g'(x) = 1 - \frac{2x}{2} + \frac{3x^2}{5} - \frac{4x^3}{7} + \cdots + g(0^+) = 1.$
		D: Continuing to differentiate, $q''(x) = -\frac{2}{2} + \frac{6x}{6x} - \frac{12x^2}{12x^2} + \cdots, q''(0^+) = -\frac{2}{3}$.
		2+3=5.
		Final:
		3 + 12 + 1 + 5 = 21
7	306	A:
		$(1+1+2-3)^8 = 1$
		B: $11 C = 165$
1	1	1163 – 103

	C: Due to symmetry, number of terms $deg(x) > deg(y)$ is equal to number of terms $deg(y) > deg(x)$ Number of terms of $deg(x) = deg(y) \rightarrow$ 9 + 7 + 5 + 3 + 1 = 25 $\frac{165 - 25}{2} = 70$ D: deg(z) is odd 9C2 + 7C2 + 5C2 + 3C2 = 36 + 21 + 10 + 3 = 70 Final:
	1 + 165 + 70 + 70 = 306
-400	A: $a(x) = (x - 50)^{2} - 476$ So $a(x)$ achieves a minimum when $x = 50$ at $y = 0 - 476 = -476$. B: $b'(x) = \frac{2(x^{2} + 1) - 2x \cdot 2x}{(x^{2} + 1)^{2}} = \frac{2 - 2x^{2}}{(x^{2} + 1)^{2}}$ So $b(x)$ achieves a minimum when $x = -1$ at $y = -\frac{2}{2} = -1$. C: $c'(x) = 3x^{2} - 6x - 9 = 3(x - 3)(x + 1)$ So $c(x)$ has a local minimum when $x = 3$ at $y = 27 - 27 - 27 + 4 = -23$. The other candidate point is when $x = -2$, where $y = -8 - 12 + 18 + 4 = 2$. There are no other candidate points because by graphing the cubic, $c(5) > c(3)$ and $c(-1)$ is a local maximum. So $c(x)$ achieves a minimum when $x = 3$ at $y = -23$. D: For every interval $[n, n + 1]$, the function is a line segment. since those are monotonic, the minimum must be in a vertex. Now, we can see the change of each $ x - k $ when x increases by 1. If $x \ge k$, $ x - k $ increases by 1 when x increases ead the rest decreases else, $ x - k $ decreases by 1 When x goes from k to $k + 1$ x - 1 through $ x - k - 1 $, $(k - 1)$ terms increase and the rest decreases We want to stop adding when change is positive, (k - 1) - (20 - (k - 1)) < 0 2k - 22 < 0 k = 10 *choosing k=11 works as well $9 + 8 + 7 + \dots + 0 + 1 + 2 + 10 = 100$
	*choosing k=11 works as well 9 + 8 + 7 + + 0 + 1 + 2 + 10 = 100
	-400

		Final:
		-476 - 1 - 23 + 100 = -400
9	169	A:
		Due to the symmetry of a circle, $H + h + K + k$ is twice the sum of the
		coordinates of the center of the circle.
		$2 \cdot (3+4) = 14$
		B:
		Point P lies on the graph, so $(a - 3)^2 + (b - 4)^2 = 4$. Point P also lies on
		$y = x$, so $a = b \rightarrow (a - 3)^2 + (a - 4)^2 = 4 \rightarrow 2a^2 - 14a + 21 =$
		0. Through graphing,
		y = x intersects the circle at two points, meaning the two roots of the
		quadratic are the two distinct values of <i>a</i> . They sum to $-\frac{-14}{2} = 7$ by Vieta's.
		B:7
		C: Note that $a^2 + b^2$ is effectively the distance from the origin squared.
		min: $\left(\sqrt{3^2 + 4^2} - 2\right)_2^2 = 9$
		$\max: \left(\sqrt{3^2 + 4^2} + 2\right)^2 = 49$
		<i>C</i> :58
		D:
		If the two circles are externally tangent (min r), the sum of the radii is equal to
		the distance between the centers
		$\sqrt{r} + 2 = \sqrt{41}$
		If the two circles are internally tangent (max r), the difference of the radii is
		equal to the distance between the centers
		$\sqrt{r} - 2 = \sqrt{41}$
		$(\sqrt{41}+2)^2 + (\sqrt{41}-2)^2 = 90$
		Final:
		14 + 7 + 58 + 90 = 169
10	$30\sqrt{3}$	A:
		$e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}$
		(x) = (-2) = -16
		$\cos(4x)$ $\cos(2x)$ 3
		$=\frac{1}{8}+\frac{1}{2}+\frac{1}{8}$
		1 1 9 26 13
		$A = \frac{1}{64} + \frac{1}{4} + \frac{1}{64} - \frac{1}{64} - \frac{1}{32} \rightarrow 43$
		B:
		Note that π
		$\int_{0}^{\frac{\pi}{2}} \cos^{2n}(x) dx = a_{2n0} \cdot \frac{\pi}{2}$
		J_0
		Also, for $\cos^{2n\tau_1}(x)$, there is no constant term.
		Thus, the summation is

		$\frac{2}{\pi} \int_0^{\frac{\pi}{2}} 1 + \frac{\cos^2(x)}{4} + \frac{\cos^4(x)}{16} \dots dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{1 - \frac{\cos^2(x)}{4}} dx$
		Multiplying the top and bottom by $\sec^2(x)$ gives
		$2\int \frac{\pi}{2} \sec^2(x) = 2\int \frac{\pi}{2} \sec^2(x)$
		$\frac{1}{\pi} \int_{0}^{1} \frac{1}{\sec^{2}(x) - \frac{1}{4}} dx = \frac{1}{\pi} \int_{0}^{1} \frac{1}{\tan^{2}(x) + \frac{3}{4}} dx$
		Substituting $u = \tan(x)$,
		$\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{2} \frac{1}{\sqrt{3}} du = \frac{2}{\pi} \cdot \frac{2}{\sqrt{3}} \cdot \frac{\pi}{2} = \frac{2}{\sqrt{3}}$
		$u^2 + \frac{1}{4}$ $u^2 + \frac{1}{4}$
		Final: $2\sqrt{2}$
		$45 \cdot \frac{2\sqrt{3}}{3} = 30\sqrt{3}$
		5
11	16	A:
		$u = x^{3} + 1, du = 3x^{2} dx$
		$\frac{1}{3}$ $\frac{uu}{u} = \frac{112}{3}$
		$a_1 + a_2 + a_3 = 1 + 3 + 2 = 6$
		B: $u = 1 - r^2 du = -2rdr$
		$\int_{1}^{1} \sqrt{1 - 1} = \int_{1}^{1} \sqrt{1 - 1} = \int_{1}^{1} \sqrt{1 - 1}$
		$\int_{0}^{1} x\sqrt{1-x^{2}} dx = \frac{1}{2} \int_{0}^{1} \sqrt{u} du = \frac{1}{3} u\sqrt{u} \Big _{0}^{1} = \frac{1}{3}$
		$b_1 + b_2 = 1 + 3 = 4$
		C: C^e
		$\int_{1} 4x \ln x dx = 2x^2 \ln x]_{1}^{e} - \int_{1} 2x dx = 2e^2 - (e^2 - 1) = e^2 + 1$
		$c_1 + c_2 + c_3 = 1 + 0 + 1 = 2$
		D: 3x - 4 M N M(x + 2) + N(x - 2) = 2x - 4
		$\frac{1}{x^2 - x - 6} - \frac{1}{x - 3} + \frac{1}{x + 2} - \frac{1}{x - 3} + \frac{1}{x - 3} - \frac{1}{x - 4}$
		$x = -2: -5N = -10 \rightarrow N = 2$ $x = 3: 5M = 5 \rightarrow M = 1$
		$\int_{-1}^{2} \left(\frac{1}{x-3} + \frac{2}{x+2} \right) dx = \ln[(x-3)(x+2)^2]_{-1}^2 = \ln 16 - \ln 4 = 2 \ln 2$
		$d_1 + d_2 = 2 + 2 = 4$
		Final:
12	_26	6+4+2+4 = 16
12	-30	When $k = 0$, this is a degenerate hyperbola (two intersecting lines).
		B:
		When $x = y = 0$, $k = -6$. Using implicit differentiation,

$3 - u_0 - 2$
C:
Let $\lim \frac{c_{n+1}}{c_{n+1}} = S$
$\lim_{n \to \infty} c_n = 0$
$\frac{c_{n-1} + 2c_{n-2} + 2}{c_n} = \frac{c_n}{c_n}$
c_{n-1} c_{n-1}
$1 + \frac{2}{s} = S \rightarrow S = 2$
D:
Let the sum be S
$2S = \frac{2c_1}{2} + \frac{2c_2}{2} \dots$
$C_2 C_3$
$3S = c_1 + \frac{2}{3} + \frac{3}{9} \dots$
$1 - \frac{2}{2} + \frac{2}{2}$
$1 - \frac{1}{3} + \frac{1}{9} \dots$
$5S + 1 = c_1 + \frac{2c_1 + c_2 + 2}{2} + \frac{2c_2 + c_3 + 2}{2} \dots$
$5S + 1 = \frac{3}{3} + \frac{3}{9} = 9S - 2$
3
$\rightarrow S = \frac{1}{4}$
Final·
_ 3 19 _
$\sqrt{2+2+2+\frac{3}{4}} = \frac{2}{4} + \sqrt{2}$