

Test #401

Name	: _	,		
ID Nu	mber: _			
Schoo	ol:			_
Divisio	on (circle	one):		
Mu	Alpha	Theta	Sponsor	

For each of the following, find:

____1. 13x15

____2. 39²-21²

_____3. Smaller angle(in degrees) between hour and minute hand between 7:40

4. Probability of drawing two cards of the same suit when drawing without replacement from a standard deck of cards

____5. Average speed if I go from Gainesville to Tampa at 20mph, and Tampa to Gainesville at 30mph without breaks

_____6. Area of isosceles trapezoid with midsegment of 4 and height of 17.

____7. Number of factors in 184.

_____8. How many ways can Robert organize 3 teams of 2 from 6 people?

____9. Number of diagonals in a dodecagon.

_____10. Value of a such that ax+4y=10 and 6x+12y=30 has infinite solutions.

_____11. Length of latus rectum of $y^2+4y-13x=9$.

_____12. Volume of a sphere with surface area of 36π

_____13. $3x^3-4x+2=0$ has roots r, s, t. Find the sum of the reciprocals of the roots

_____14. S_n is the sum of the first n terms of a sequence($a_1, a_2...$). If S_n=n²+3n+2, find a_5 .

____15. x, if 3x+y+2x+2=4x+2y+19-y

_____16. The longest space diagonal of an octahedron with side length 4.

____17. Remainder when 4⁹¹ is divided by 89.

 $\underline{\qquad}18.\,\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+\frac{81}{128}.\,.$

_____19. Wiggie has \$3.20 in his piggybank. He has the same number of quarters and nickels. What is the greatest number of quarters he could have?

_____20. Probability you roll two fair 6-sided dice and the sum is 8.

____21. Number of integer values that satisfy $x^2 < 69$ and $x^2 > 5$

_____22. John's speed in meters per second if he runs 90 kilometers an hour.

____23. 23% of 23.

_____24. Find n, if 2⁰+2¹...2¹¹=(2⁰+2¹...2⁵)n

____25. Number of terminating zeros in 28!

<u>26.</u> ${}_{5}C_{2} + 5 \times 2$

_____27. Sum of the 4th and 5th prime numbers.

<u>28. $\frac{1}{8} + \frac{7}{12} + \frac{4}{3}$ </u>

_29. X if 1112₃=45_X

____30. Minimum value of x²-2x-5

____31. Sum of digits in 6⁴.

_____32. Each of the letters M, R. L, and U represent a different odd integer between 2 and 10. What is the least possible value of

 $\frac{M \bullet R - L}{U}?$

____33. Sum of the distinct real values of x that satisfy $x^{8}-4x^{6}+8x^{4}-2x^{2}-2024$.

____34. Sum of coefficients of $(x+3)^5$

35. a+b, if (3+i)(4+3i)(3-i)(1+i)=a+bi

_____36. Number of Bob's needed to build 5 walls in 3 days, if 18 Bob's can build 15 walls in two days.

_____37. Number of perfect squares between 102 and 10005

_____38. What is the sum of the values for L and U which yield the greatest 6-digit number 5L5,62U that is divisible by 44?

 $39. \sqrt{175} + \sqrt{28} + \sqrt{63} + \sqrt{112}$

_____40. Slope of the line that is tangent to $(x-3)^2+(y-4)^2=25$ at the origin.