#1 Precalculus – Hustle MA⊕ National Convention 2024

Given vectors $u = \langle 5, 20, 0 \rangle$ and $v = \langle 2, -1, 12 \rangle$. Find the dot product of the two vectors.

#1 Precalculus - Hustle MA⊕ National Convention 2024

Given vectors $u = \langle 5, 20, 0 \rangle$ and $v = \langle 2, -1, 12 \rangle$. Find the dot product of the two vectors.

Answer :			
AllSwer:	Amarican	-	
	answei	:	

Round 1 2 3 4 5

#1 Precalculus – Hustle MA® National Convention 2024

Given vectors $u = \langle 5, 20, 0 \rangle$ and $v = \langle 2, -1, 12 \rangle$. Find the dot product of the two vectors.

Answer : _____

Round 1 2 3 4 5

#1 Precalculus - Hustle MA⊕ National Convention 2024

Given vectors $u = \langle 5, 20, 0 \rangle$ and $v = \langle 2, -1, 12 \rangle$. Find the dot product of the two vectors.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#2 Precalculus – Hustle MA⊕ National Convention 2024

Express $N = \frac{\sqrt{6}}{1+\sqrt{6}}$ in simplest form with a positive integer denominator.

#2 Precalculus - Hustle	
MA⊕ National Convention 2	2024

Express $N = \frac{\sqrt{6}}{1+\sqrt{6}}$ in simplest form with a positive integer denominator.

Answer : _____

Round 1 2 3 4 5

#2 Precalculus – Hustle MA⊕ National Convention 2024

Express $N = \frac{\sqrt{6}}{1+\sqrt{6}}$ in simplest form with a positive integer denominator.

Answer : _____

Round 1 2 3 4 5

#2 Precalculus – Hustle MA⊕ National Convention 2024

Express $N = \frac{\sqrt{6}}{1+\sqrt{6}}$ in simplest form with a positive integer denominator.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#3 Precalculus – Hustle MA⊕ National Convention 2024

Find the smallest possible angle of rotation (in degrees, clockwise or counterclockwise) needed to eliminate the *xy* term from:

$$7x^2 + 4\sqrt{3}xy + 3x - 8y - 5y^2 + 7 = 0$$

#3 Precalculus – Hustle MA⊕ National Convention 2024

Find the smallest possible angle of rotation (in degrees, clockwise or counterclockwise) needed to eliminate the *xy* term from:

$$7x^2 + 4\sqrt{3}xy + 3x - 8y - 5y^2 + 7 = 0$$

Answer :	

Round 1 2 3 4 5

#3 Precalculus - Hustle MA® National Convention 2024

Find the smallest possible angle of rotation (in degrees, clockwise or counterclockwise) needed to eliminate the *xy* term from:

$$7x^2 + 4\sqrt{3}xy + 3x - 8y - 5y^2 + 7 = 0$$

Answer : ______

Round 1 2 3 4 5

#3 Precalculus - Hustle MA⊕ National Convention 2024

Find the smallest possible angle of rotation (in degrees, clockwise or counterclockwise) needed to eliminate the *xy* term from:

$$7x^2 + 4\sqrt{3}xy + 3x - 8y - 5y^2 + 7 = 0$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#4 Precalculus - Hustle MA⊕ National Convention 2024

Find
$$x + y$$
 if $x = \sqrt{20 - \sqrt{20 - \sqrt{20 - \cdots}}}$
and $y = (\sqrt{2}i - \sqrt{6})^6$

#4 Precalculus - Hustle MA⊕ National Convention 2024

Find
$$x + y$$
 if $x = \sqrt{20 - \sqrt{20 - \sqrt{20 - \cdots}}}$
and $y = (\sqrt{2}i - \sqrt{6})^6$

Answer	:	
AllSWEI		

Round 1 2 3 4 5

#4 Precalculus - Hustle MA⊕ National Convention 2024

Find
$$x + y$$
 if $x = \sqrt{20 - \sqrt{20 - \sqrt{20 - \cdots}}}$
and $y = (\sqrt{2}i - \sqrt{6})^6$

Answer : _____

Round 1 2 3 4 5

#4 Precalculus - Hustle MA® National Convention 2024

Find
$$x + y$$
 if $x = \sqrt{20 - \sqrt{20 - \sqrt{20 - \cdots}}}$
and $y = (\sqrt{2}i - \sqrt{6})^6$

Answer : _____

Round 1 2 3 4 5

Answer : ______

#5 Precalculus - Hustle MA⊕ National Convention 2024

The range of the function $f(x) = \tan^{-1} \theta$ can be expressed as (a, b). Compute a + b.

#5 Precalculus – Hustle MA⊕ National Convention 2024

The range of the function $f(x) = \tan^{-1} \theta$ can be expressed as (a, b). Compute a + b.

_	
Ancwar	
Answer	

Round 1 2 3 4 5

#5 Precalculus – Hustle MA⊕ National Convention 2024

The range of the function $f(x) = \tan^{-1} \theta$ can be expressed as (a, b). Compute a + b.

Answer : _____

Round 1 2 3 4 5

#5 Precalculus - Hustle MA⊕ National Convention 2024

The range of the function $f(x) = \tan^{-1} \theta$ can be expressed as (a, b). Compute a + b.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#6 Precalculus – Hustle MA⊕ National Convention 2024

Find the determinant of:

#6 Precalculus - Hustle MA⊕ National Convention 2024

Find the determinant of:

Answer : _____

Round 1 2 3 4 5

#6 Precalculus – Hustle MA⊕ National Convention 2024

Find the determinant of:

Answer : _____

Round 1 2 3 4 5

#6 Precalculus - Hustle MA⊕ National Convention 2024

Find the determinant of:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#7 Precalculus – Hustle MA⊕ National Convention 2024

Find the determinant of:

$$\begin{bmatrix} 3 & 0 & 2 & -1 \\ 1 & 2 & 0 & -2 \\ 4 & 0 & 6 & -3 \\ 5 & 0 & 2 & 0 \end{bmatrix}$$

#7 Precalculus - Hustle MA⊕ National Convention 2024

Find the determinant of:

$$\begin{bmatrix} 3 & 0 & 2 & -1 \\ 1 & 2 & 0 & -2 \\ 4 & 0 & 6 & -3 \\ 5 & 0 & 2 & 0 \end{bmatrix}$$

Answer : _____

Round 1 2 3 4 5

#7 Precalculus – Hustle MA⊕ National Convention 2024

Find the determinant of:

$$\begin{bmatrix} 3 & 0 & 2 & -1 \\ 1 & 2 & 0 & -2 \\ 4 & 0 & 6 & -3 \\ 5 & 0 & 2 & 0 \end{bmatrix}$$

Answer : _____

Round 1 2 3 4 5

#7 Precalculus – Hustle MA⊕ National Convention 2024

Find the determinant of:

$$\begin{bmatrix} 3 & 0 & 2 & -1 \\ 1 & 2 & 0 & -2 \\ 4 & 0 & 6 & -3 \\ 5 & 0 & 2 & 0 \end{bmatrix}$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#8 Precalculus - Hustle	
MA® National Convention 2024	4

Compute:

$$\tan\left(\arccos\left(\sin\left(-\frac{\pi}{6}\right)\right)\right)$$

#8 Precalculus – Hustle MA⊕ National Convention 2024

Compute:

$$\tan\left(\arccos\left(\sin\left(-\frac{\pi}{6}\right)\right)\right)$$

Answer : _____

Round 1 2 3 4 5

#8 Precalculus – Hustle MA⊚ National Convention 2024

Compute:

$$\tan\left(\arccos\left(\sin\left(-\frac{\pi}{6}\right)\right)\right)$$

Answer : _____

Round 1 2 3 4 5

#8 Precalculus – Hustle MA⊕ National Convention 2024

Compute:

 $\tan\left(\arccos\left(\sin\left(-\frac{\pi}{6}\right)\right)\right)$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#9 Precalculus - Hustle MA© National Convention 2024

Given: $6^x + 36^x = 72$ and $\log_6 y = x$, find y.

#9 Precalculus - Hustle MA⊕ National Convention 2024

Given: $6^x + 36^x = 72$ and $\log_6 y = x$, find y.

Answer : _____

Round 1 2 3 4 5

#9 Precalculus – Hustle MA® National Convention 2024

Given: $6^x + 36^x = 72$ and $\log_6 y = x$, find y.

Answer : _____

Round 1 2 3 4 5

#9 Precalculus - Hustle MA⊕ National Convention 2024

Given: $6^x + 36^x = 72$ and $\log_6 y = x$, find y.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#10 Precalculus – Hustle MA® National Convention 2024

When the solutions to $x^6 - 4096 = 0$ are graphed on the complex (Argand) plane, they can be connected to form a hexagon. What is the area enclosed by the hexagon?

#10 Precalculus – Hustle MA® National Convention 2024

When the solutions to $x^6 - 4096 = 0$ are graphed on the complex (Argand) plane, they can be connected to form a hexagon. What is the area enclosed by the hexagon?

_		
Answer		
7112 W C1		

Round 1 2 3 4 5

#10 Precalculus – Hustle MA⊕ National Convention 2024

When the solutions to $x^6 - 4096 = 0$ are graphed on the complex (Argand) plane, they can be connected to form a hexagon. What is the area enclosed by the hexagon?

Answer : _____

Round 1 2 3 4 5

#10 Precalculus - Hustle MA⊕ National Convention 2024

When the solutions to $x^6 - 4096 = 0$ are graphed on the complex (Argand) plane, they can be connected to form a hexagon. What is the area enclosed by the hexagon?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#11 Precalculus - Hustle MA⊕ National Convention 2024

What is the sum of the reciprocals of the roots of $S(x) = 12x^6 - 7x^4 - 6x^3 + 12x + 4$

#11 Precalculus – Hustle MA⊕ National Convention 2024

What is the sum of the reciprocals of the roots of $S(x) = 12x^6 - 7x^4 - 6x^3 + 12x + 4$

_	
Ancwar	
Answer	

Round 1 2 3 4 5

#11 Precalculus - Hustle MA⊕ National Convention 2024

What is the sum of the reciprocals of the roots of $S(x) = 12x^6 - 7x^4 - 6x^3 + 12x + 4$

Answer : _____

Round 1 2 3 4 5

#11 Precalculus - Hustle MA⊕ National Convention 2024

What is the sum of the reciprocals of the roots of $S(x) = 12x^6 - 7x^4 - 6x^3 + 12x + 4$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#12 Precalculus – Hustle MA® National Convention 2024

Let $f(x) = \frac{(x-3)^2}{x^2-5x+6}$. Find the equations of all asymptotes in the graph of f(x).

#12 Precalculus - Hustle MA⊕ National Convention 2024

Let $f(x) = \frac{(x-3)^2}{x^2-5x+6}$. Find the equations of all asymptotes in the graph of f(x).

Round 1 2 3 4 5

#12 Precalculus – Hustle MA© National Convention 2024

Let $f(x) = \frac{(x-3)^2}{x^2-5x+6}$. Find the equations of all asymptotes in the graph of f(x).

Answer : _____

Round 1 2 3 4 5

#12 Precalculus - Hustle MA® National Convention 2024

Let $f(x) = \frac{(x-3)^2}{x^2-5x+6}$. Find the equations of all asymptotes in the graph of f(x).

Answer : _____

Round 1 2 3 4 5

Answer : _____

#13 Precalculus - Hustle MA⊕ National Convention 2024

Solve for x:

$$\log_{\sqrt{6}} \begin{vmatrix} 2 & 3 & 2 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{vmatrix} = x$$

#13 Precalculus – Hustle MA⊕ National Convention 2024

Solve for x:

$$\log_{\sqrt{6}} \begin{vmatrix} 2 & 3 & 2 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{vmatrix} = x$$

Answer	
MII 3 W CI	

Round 1 2 3 4 5

#13 Precalculus - Hustle MA⊕ National Convention 2024

Solve for x:

$$\log_{\sqrt{6}} \begin{vmatrix} 2 & 3 & 2 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{vmatrix} = x$$

Answer : ______

Round 1 2 3 4 5

#13 Precalculus - Hustle MA® National Convention 2024

Solve for x:

$$\log_{\sqrt{6}} \begin{vmatrix} 2 & 3 & 2 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{vmatrix} = x$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#14 Precalculus – Hustle MA© National Convention 2024	#14 Precalculus – Hustle MA⊕ National Convention 2024
Simplify: $\log_{11} 625 \cdot \log_7 243 \cdot \log_5 14641 \cdot \log_3 16807$	Simplify: $\log_{11} 625 \cdot \log_7 243 \cdot \log_5 14641 \cdot \log_3 16807$
Answer :	Answer :
Round 1 2 3 4 5	Round 1 2 3 4 5
#14 Precalculus – Hustle MA⊕ National Convention 2024	#14 Precalculus – Hustle MA⊕ National Convention 2024
G1 110	·
Simplify: $\log_{11} 625 \cdot \log_7 243 \cdot \log_5 14641 \cdot \log_3 16807$	Simplify: $\log_{11} 625 \cdot \log_7 243 \cdot \log_5 14641 \cdot \log_3 16807$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#15 Precalculus - Hustle	
MA® National Convention 2024	

If ABCDEF is a regular hexagon with $EA = 3\sqrt{3}$, compute its area.

#15 Precalculus – Hustle MA⊕ National Convention 2024

If ABCDEF is a regular hexagon with $EA = 3\sqrt{3}$, compute its area.

A			
Answe	r		

Round 1 2 3 4 5

#15 Precalculus – Hustle MA⊕ National Convention 2024

If ABCDEF is a regular hexagon with $EA = 3\sqrt{3}$, compute its area.

Answer : _____

Round 1 2 3 4 5

#15 Precalculus - Hustle MA⊕ National Convention 2024

If ABCDEF is a regular hexagon with $EA = 3\sqrt{3}$, compute its area.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#16 Precalculus - Hustle
MAΘ National Convention 2024

If $\log_2(\log_3(\log_7(\log_{15}(S)))) = 6$, then how many distinct positive prime numbers are factors of S?

#16 Precalculus – Hustle MA⊕ National Convention 2024

If $log_2(log_3(log_7(log_{15}(S)))) = 6$, then how many distinct positive prime numbers are factors of S?

Answer	:	

Round 1 2 3 4 5

#16 Precalculus – Hustle MA® National Convention 2024

If $\log_2(\log_3(\log_7(\log_{15}(S)))) = 6$, then how many distinct positive prime numbers are factors of S?

Answer : ______

Round 1 2 3 4 5

#16 Precalculus - Hustle MA® National Convention 2024

If $\log_2(\log_3(\log_{15}(S))) = 6$, then how many distinct positive prime numbers are factors of S?

Answer : ______

Round 1 2 3 4 5

Answer : _____

#17 Precalculus - Hustle MA⊕ National Convention 2024

For all nonzero real numbers x,

$$2f(x) + f\left(\frac{1}{x}\right) = x$$

Find f(x) as a single fraction.

#17 Precalculus – Hustle MA⊕ National Convention 2024

For all nonzero real numbers x,

$$2f(x) + f\left(\frac{1}{x}\right) = x$$

Find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

#17 Precalculus - Hustle MA⊕ National Convention 2024

For all nonzero real numbers x,

$$2f(x) + f\left(\frac{1}{x}\right) = x$$

Find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

#17 Precalculus - Hustle MA® National Convention 2024

For all nonzero real numbers x,

$$2f(x) + f\left(\frac{1}{x}\right) = x$$

Find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#18 Precalculus - Hustle MA⊕ National Convention 2024

Evaluate:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 8}$$

#18 Precalculus – Hustle MA⊕ National Convention 2024

Evaluate:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 8}$$

Answer	
MII3WCI	

Round 1 2 3 4 5

#18 Precalculus – Hustle MA© National Convention 2024

Evaluate:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 8}$$

Answer : _____

Round 1 2 3 4 5

#18 Precalculus - Hustle MA® National Convention 2024

Evaluate:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 8}$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#19 Precalculus - Hustle MA⊕ National Convention 2024

Find the positive difference between the maximum and minimum *y* values among all points on the polar graph

$$r^2 = -6r\cos\theta + 7$$

#19 Precalculus – Hustle MA⊕ National Convention 2024

Find the positive difference between the maximum and minimum *y* values among all points on the polar graph

$$r^2 = -6r\cos\theta + 7$$

_	
Answer :	
answei .	

Round 1 2 3 4 5

#19 Precalculus – Hustle MA© National Convention 2024

Find the positive difference between the maximum and minimum *y* values among all points on the polar graph

$$r^2 = -6r\cos\theta + 7$$

Answer : _____

Round 1 2 3 4 5

#19 Precalculus - Hustle MA⊕ National Convention 2024

Find the positive difference between the maximum and minimum *y* values among all points on the polar graph

$$r^2 = -6r\cos\theta + 7$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#20 Precalculus – Hustle MA⊕ National Convention 2024

Aditi, Angela, Anjana, Devika, and Navya are playing a dice game, where the players roll one fair six-sided die. Aditi starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability that Anjana wins?

#20 Precalculus – Hustle MA⊕ National Convention 2024

Aditi, Angela, Anjana, Devika, and Navya are playing a dice game, where the players roll one fair six-sided die. Aditi starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability that Anjana wins?

_		
Answer		
AIISWEI		

Round 1 2 3 4 5

#20 Precalculus – Hustle MA© National Convention 2024

Aditi, Angela, Anjana, Devika, and Navya are playing a dice game, where the players roll one fair six-sided die. Aditi starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability that Anjana wins?

Answer : _____

Round 1 2 3 4 5

#20 Precalculus - Hustle MA® National Convention 2024

Aditi, Angela, Anjana, Devika, and Navya are playing a dice game, where the players roll one fair six-sided die. Aditi starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability that Anjana wins?

Answer : _____ Answer : _____

Round 1 2 3 4 5

#21 Precalculus - Hustle MA⊕ National Convention 2024

Compute:

$$\frac{\sin\frac{\pi}{12} + \cos\frac{\pi}{12}}{\sin^3\frac{\pi}{12} + \cos^3\frac{\pi}{12}}$$

#21 Precalculus - Hustle MA⊕ National Convention 2024

Compute:

$$\frac{\sin\frac{\pi}{12} + \cos\frac{\pi}{12}}{\sin^3\frac{\pi}{12} + \cos^3\frac{\pi}{12}}$$

Answer:	

Round 1 2 3 4 5

#21 Precalculus – Hustle MA© National Convention 2024

Compute:

$$\frac{\sin\frac{\pi}{12} + \cos\frac{\pi}{12}}{\sin^3\frac{\pi}{12} + \cos^3\frac{\pi}{12}}$$

Answer : _____

Round 1 2 3 4 5

#21 Precalculus – Hustle MA® National Convention 2024

Compute:

$$\frac{\sin\frac{\pi}{12} + \cos\frac{\pi}{12}}{\sin^3\frac{\pi}{12} + \cos^3\frac{\pi}{12}}$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#22 Precalculus - Hustle MA⊕ National Convention 2024

Let T(x) be an odd cubic polynomial with a root at x = 11. If its other roots are n and s, then what is the value of $n^2 + s^2$?

#22 Precalculus – Hustle MA⊕ National Convention 2024

Let T(x) be an odd cubic polynomial with a root at x = 11. If its other roots are n and s, then what is the value of $n^2 + s^2$?

_		
Answer		
7112 W C1		

Round 1 2 3 4 5

#22 Precalculus – Hustle MA© National Convention 2024

Let T(x) be an odd cubic polynomial with a root at x = 11. If its other roots are n and s, then what is the value of $n^2 + s^2$?

Answer : ______

Round 1 2 3 4 5

#22 Precalculus – Hustle MA⊕ National Convention 2024

Let T(x) be an odd cubic polynomial with a root at x = 11. If its other roots are n and s, then what is the value of $n^2 + s^2$?

Answer : _____

Answer : _____

Round 1 2 3 4 5

#23 Precalculus - Hustle MA⊕ National Convention 2024

The graph of the equation

$$x^2 - y^2 + 6x + 4y + 5 = 0$$

is a pair of intersecting lines. Compute the sum of the coordinates of the y-intercepts of the two lines.

Answer : _____

Round 1 2 3 4 5

#23 Precalculus - Hustle MA⊕ National Convention 2024

The graph of the equation

$$x^2 - y^2 + 6x + 4y + 5 = 0$$

is a pair of intersecting lines. Compute the sum of the coordinates of the y-intercepts of the two lines.

#23 Precalculus – Hustle MA© National Convention 2024

The graph of the equation

$$x^2 - y^2 + 6x + 4y + 5 = 0$$

is a pair of intersecting lines. Compute the sum of the coordinates of the y-intercepts of the two lines.

Answer : ______

Round 1 2 3 4 5

#23 Precalculus – Hustle MA⊕ National Convention 2024

The graph of the equation

$$x^2 - y^2 + 6x + 4y + 5 = 0$$

is a pair of intersecting lines. Compute the sum of the coordinates of the y-intercepts of the two lines.

Answer : ______

Round 1 2 3 4 5

Answer : _____

#24 Precalculus - Hustle MA⊕ National Convention 2024

Find the amplitude of:

$$N(x) = 3\sin\left(x - \frac{\pi}{4}\right) + 4\cos\left(x + \frac{\pi}{4}\right)$$

#24 Precalculus – Hustle MA⊕ National Convention 2024

Find the amplitude of:

$$N(x) = 3\sin\left(x - \frac{\pi}{4}\right) + 4\cos\left(x + \frac{\pi}{4}\right)$$

Answer : ______

Round 1 2 3 4 5

#24 Precalculus – Hustle MA© National Convention 2024

Find the amplitude of:

$$N(x) = 3\sin\left(x - \frac{\pi}{4}\right) + 4\cos\left(x + \frac{\pi}{4}\right)$$

Answer : _____

Round 1 2 3 4 5

#24 Precalculus – Hustle MA® National Convention 2024

Find the amplitude of:

$$N(x) = 3\sin\left(x - \frac{\pi}{4}\right) + 4\cos\left(x + \frac{\pi}{4}\right)$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#25 Precalculus - Hustle MA⊕ National Convention 2024

Compute:

$$\sin\left(\tan^{-1}\left(-\frac{3}{4}\right) + \cot^{-1}\left(-\frac{5}{12}\right)\right)$$

#25 Precalculus – Hustle MA⊕ National Convention 2024

Compute:

$$\sin\left(\tan^{-1}\left(-\frac{3}{4}\right) + \cot^{-1}\left(-\frac{5}{12}\right)\right)$$

Answer : _____

Round 1 2 3 4 5

#25 Precalculus – Hustle MA⊕ National Convention 2024

Compute:

$$\sin\left(\tan^{-1}\left(-\frac{3}{4}\right) + \cot^{-1}\left(-\frac{5}{12}\right)\right)$$

Answer : _____

Round 1 2 3 4 5

#25 Precalculus - Hustle MA® National Convention 2024

Compute:

$$\sin\left(\tan^{-1}\left(-\frac{3}{4}\right) + \cot^{-1}\left(-\frac{5}{12}\right)\right)$$

Answer : _____

Answer : _____

Round 1 2 3 4 5