-10	$\frac{6-\sqrt{6}}{5}$	15	-508	0
0	20	$-\sqrt{3}$	8	$24\sqrt{3}$
-3	x = 2, y = 1	2	400	$\frac{27\sqrt{3}}{2}$
2	$\frac{2x^2-1}{3x}$	7 24	8	$\frac{36}{211}$
$\frac{4}{3}$	121	4	1	<u>63</u> 65

1.	-10	The projection can be found by plugging in values and simplifying the			
		formula below:			
•	_	$(5, 20, 0) \cdot (2, -1, 12) = (5)(2) + (20)$			
2.	$\frac{6-\sqrt{6}}{5}$	To rationalize the denominator, we mu	ist multiply it by the conjugate and		
	5	then simplify.	<u> </u>		
		$\sqrt{6}$ $(1-\sqrt{6})$ $\sqrt{6}-6$	$-6 - \sqrt{6}$		
		$N = \frac{\sqrt{6}}{(1+\sqrt{6})} \cdot \frac{(1-\sqrt{6})}{(1-\sqrt{6})} = \frac{\sqrt{6}-6}{1-6} =$	5		
3.	15	B			
		$\tan(2\theta) = \frac{B}{A - C}$			
		$4\sqrt{3}$ $4\sqrt{3}$			
		$\tan(2\theta) = \frac{4\sqrt{3}}{7 - (-5)} = \frac{4\sqrt{3}}{12}$			
		$\tan(2\theta) = \frac{\sqrt{3}}{2}$			
		Since $2\theta = \frac{3}{6}$, the angle of rotation is	$\frac{\pi}{10}$ or 15 degrees.		
4.	-508	0 12			
	By transitive property, we can say $x = \sqrt{20 - x}$				
		$x^2 = 20 - x$	420 X		
		$x^{2} - 20 - x$ $x^{2} + x - 20 = 0$			
		(x - 4)(x + 5) = 0			
		(x - 4)(x + 5) = 0 $x \in \{4, -5\}$ Since $x \neq -5$, the only solution is $x = 4$. Next, we can solve for y.			
			(; (a) 1 ⁶		
		By factoring, we can get $y = \left[\left(2\sqrt{2} \right) \right]$	$\left[\frac{l}{2}-\frac{\sqrt{3}}{2}\right]$.		
		$y = \left(2\sqrt{2}\right)^6 cis\left(\frac{5\pi}{6}\right)^6$			
	$y = (512)cis(5\pi) = (512)cis(\pi) = -512$		-512		
		x + y = 4 + (-512) = -508			
5.	0	The bounds of the ranges are:			
		$\sin^{-1}\theta$	Γ π π		
			$\lfloor \frac{\overline{2}, \overline{2}}{2} \rfloor$		
		$\cos^{-1}\theta$	[0, π]		
		$\tan^{-1}\theta$	$\begin{pmatrix} \pi & \pi \end{pmatrix}$		

The sum of the bounds of the ranges can be calculated as: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

6. 0 The first step of finding the inverse of the matrix would be to find the determinant, as so:
1 2 3 1 2
4 5 6 4 5
7 8 9 7 8
= (1)(5)(9) + (2)(6)(7) + (3)(4)(8) - (3)(5)(7)
- (8)(6)(1) - (2)(4)(9) = 0
7. 20 To find the determinant of a 4x4 matrix, we must use the cofactor expansion.

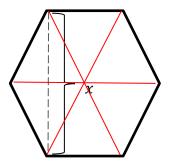
$$\begin{vmatrix} 3 & 2 & -1 \\ 4 & 5 & 0 & 4 \\ 5 & 2 & 0 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 & -1 \\ 4 & 5 & -3 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 5 & 2 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 & -1 \\ 4 & 5 & -3 \end{vmatrix} = 20$$
8. $-\sqrt{3}$ tan(cos⁻¹(sin $(-\frac{\pi}{6}))$)
sin $(-\frac{\pi}{6}) = -\frac{1}{2}$
 $\cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3}$
tan $(\frac{2\pi}{3}) = -\sqrt{3}$
9. 8 Since we know log₆ $y = x$, we know that $y = 6^x$.
We can then re-write $6^x + 36^x = 72$ as $y + y^2 = 72$.
 $y^2 + y - 72 = 0$
 $(y - 8)(y + 9) = 0$
The solutions are $y = 8$ and $y = -9$. The second solution does not work, so $y = 8$.
10. $24\sqrt{3}$ The tricky part of this question was realizing that $4^6 = 4096$.
When graphed, we get a hexagon which can be broken in to equilateral triangles of side length 4.
 $Area = 6\frac{1}{2}ab\sin C = 6\frac{1}{2}\cdot 4 \cdot 4 \cdot \sin\frac{\pi}{3}$)
 $Area = 24\sqrt{3}$
11. -3 A formula of the sum of the reciprocal of the roots is the negation of the linear term over the constant term. For this polynomial, it would be $-\frac{12}{4} = -3$.
12. $x = 2$
By factoring our equation we get $y = \frac{(x-3)^2}{(x-2)(x-3)}$. This gives us a vertical $x = 3$, and a horizontal asymptote of $y = 1$ (since the powers of the numerator and denominator are equal).

13. 2 Finding the determinant of the 3x3 matrix, we get 6, leaving our equation as $\log_{\sqrt{6}} 6 = x = 2$.

14. 400 First we must do change of base and simplify with cancellation. $\log_{11} 625 \cdot \log_7 243 \cdot \log_5 14641 \cdot \log_3 16807$ $= \frac{4 \log 5}{\log 11} \cdot \frac{5 \log 3}{\log 7} \cdot \frac{4 \log 11}{\log 5} \cdot \frac{5 \log 7}{\log 3}$

$$= (4)(5)(4)(5) = 40$$

- 15.
 - $\frac{27\sqrt{3}}{2}$
- If we were to re-draw the hexagon to include the 6 equilateral triangles with side length y, we would notice that the line is goes through 2 altitudes.



Altitude of an equilateral triangle = $\frac{y\sqrt{3}}{2}$

$$x = 3\sqrt{3} = 2\left(\frac{y\sqrt{3}}{2}\right)$$

$$y = 3 \& Area = 6\left(\frac{y^2\sqrt{3}}{4}\right) = \frac{27\sqrt{3}}{2}$$

$$\log_2(\log_3(\log_7(\log_{15}(S)))) = 6$$

$$\log_3(\log_7(\log_{15}(S))) = 2^6$$

$$\log_2(\log_1(S)) = 3^{2^6}$$

7^{3²⁶}

$$\log_{15}(S) =$$

 $S = 15^{7^{3^{2^{6}}}}$

15 only has 2 prime factors of 3 and 5.

17.
$$\frac{2x^2 - 1}{3x}$$
 Plugging in $\frac{1}{x}$, we get $2f\left(\frac{1}{x}\right) + f(x) = \frac{1}{x}$. Subtract this from two times the original to get $3f(x) = 2x - \frac{1}{x}$. Therefore, $f(x) = \frac{2x^2 - 1}{3x}$.
18.
$$\frac{7}{24}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 8} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n+2} - \frac{1}{n+4}$$

$$= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6} + \frac{1}{5} - \frac{1}{7} + \cdots\right)$$

We can see that this is a telescoping series where most terms will cancel out. The only terms that do not cancel leave us with a sum of $\frac{1}{2}(\frac{1}{3} + \frac{1}{4}) = \frac{7}{24}$. 19. 8 Using the conversion formulas to Cartesian coordinates, we get $x^2 + y^2 = -6x + 7$. This becomes $(x + 3)^2 + y^2 = 16$ The difference between the maximum and minimum is the diameter which is 8.

20. $\frac{36}{211}$ For Anjana to win in the first round, Aditi and Angela must roll a 4 or below and Anjana must roll a 5 or 6. $P(win round 1) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}$. For $\frac{4}{3}$

Anjana to win in the second round, everyone must have rolled a 4 or below the first round, and Aditi and Angela must the second round.

$$P(win round 2) = \left(\frac{2}{3}\right)^7 \cdot \frac{1}{3}.$$
 This becomes an infinite geometric series with ratio $\frac{2^5}{3}$ The sum is $\frac{\left(\frac{2}{3}\right)^2 \frac{1}{3}}{1 - \left(\frac{2}{3}\right)^5} = \frac{36}{211}$

21.

Factor the bottom by sum of cubes, and simply the expression: (π)

$$\frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{(\sin(\frac{\pi}{12}))^3 + (\cos(\frac{\pi}{12}))^3}$$

$$= \frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{(\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right))((\sin\frac{\pi}{12})^2 - \sin\frac{\pi}{12}\cos\frac{\pi}{12} + (\cos\frac{\pi}{12})^2)}$$

$$= \frac{1}{(\sin\frac{\pi}{12})^2 - \sin\frac{\pi}{12}\cos\frac{\pi}{12} + (\cos\frac{\pi}{12})^2}$$

Using the Pythagorean identity and sine double angle formula we get $\frac{1}{1-\frac{1}{2}\sin\frac{\pi}{6}} = \frac{4}{3}$

- 22. 121 An odd cubic polynomial means that our function is of the form $f(x) = Ax^3 + Bx$. Factoring an x out gives $f(x) = x(Ax^2 + B)$. This makes 0 one of our solutions, but also the negation of the root x = 11, or x = -11, must also be a root by difference of squares (A or B must be negative to have a real root). Our value of $n^2 + s^2 = 0 + 121 = 121$.
- 23. 4 Completing the square on the x terms and the y terms to get $x^2 + 6x + 9 (y^2 4y + 4) = (x + 3)^2 (y 2)^2 = (x + y + 1)(x y + 5)$. The y-intercepts of the two lines are at -1 and 5. They add to 4.
- 24. 1 Expanding out both expressions and noting $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, we obtain $\frac{1}{\sqrt{2}}(3\sin x 3\cos x + 4\cos x 4\sin x) = \frac{\cos x \sin x}{\sqrt{2}}$. Because the arguments of sine and cosine in the numerator are identical, its amplitude is $\sqrt{1^2 + 1^2} = \sqrt{2}$, so the overall amplitude of the function is $\frac{\sqrt{2}}{\sqrt{2}} = 1$.

25.
$$\frac{63}{65}$$
 Let $x = \tan^{-1}\left(-\frac{3}{4}\right)$ and $y = \cot^{-1}\left(-\frac{5}{12}\right)$, then x is in quadrant 4 and y is
in quadrant 2. Thus $\sin(x + y) = \sin x \cos y + \cos x \sin y = \left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right) + \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) = \frac{63}{65}$.