#1 Calculus - Hustle MA⊕ National Convention 2024 #### #1 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\lim_{x \to \infty} \left(\sqrt{x^2 + 6x + 8} - \sqrt{x^2 + 8x + 6} \right)$$ Evaluate: $$\lim_{x \to \infty} \left(\sqrt{x^2 + 6x + 8} - \sqrt{x^2 + 8x + 6} \right)$$ Answer : ______ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #1 Calculus - Hustle MA⊚ National Convention 2024 #1 Calculus - Hustle MA© National Convention 2024 Evaluate: $$\lim_{x \to \infty} \left(\sqrt{x^2 + 6x + 8} - \sqrt{x^2 + 8x + 6} \right)$$ Evaluate: $$\lim_{x \to \infty} \left(\sqrt{x^2 + 6x + 8} - \sqrt{x^2 + 8x + 6} \right)$$ Answer : _____ Answer : _____ Round 1 2 3 4 5 # #2 Calculus – Hustle MA⊕ National Convention 2024 # Find the nonzero coordinate of the *y*-intercept of the line normal to the curve $$y = \frac{x^4}{2} - \frac{2x^3}{3} + 4x - 5$$ at $x = 1$. Round 1 2 3 4 5 Answer : _____ #### #2 Calculus - Hustle MA® National Convention 2024 Find the nonzero coordinate of the *y*-intercept of the line normal to the curve $$y = \frac{x^4}{2} - \frac{2x^3}{3} + 4x - 5$$ at $x = 1$. #### #2 Calculus – Hustle MA⊕ National Convention 2024 Find the nonzero coordinate of the *y*-intercept of the line normal to the curve $$y = \frac{x^4}{2} - \frac{2x^3}{3} + 4x - 5$$ at $x = 1$. Answer : _____ Round 1 2 3 4 5 #### #2 Calculus - Hustle MA⊕ National Convention 2024 Find the nonzero coordinate of the *y*-intercept of the line normal to the curve $$y = \frac{x^4}{2} - \frac{2x^3}{3} + 4x - 5$$ at $x = 1$. Answer : _____ Answer : _____ Round 1 2 3 4 5 Round 1 2 3 4 5 | #3 Calculus - Hustle | | |-------------------------|------| | MA© National Convention | 2024 | #### #3 Calculus – Hustle MA⊕ National Convention 2024 Find the slope of the tangent line to the curve $2x^2y + 3x^3y^2 - x = 7$ at the point (1, -2). Find the slope of the tangent line to the curve $2x^2y + 3x^3y^2 - x = 7$ at the point (1, -2). Answer : _____ Round 1 2 3 4 5 #3 Calculus - Hustle MA⊕ National Convention 2024 Find the slope of the tangent line to the curve $2x^2y + 3x^3y^2 - x = 7$ at the point (1, -2). Answer : _____ Round 1 2 3 4 5 #3 Calculus – Hustle MA⊕ National Convention 2024 Find the slope of the tangent line to the curve $2x^2y + 3x^3y^2 - x = 7$ at the point (1, -2). Answer : _____ Round 1 2 3 4 5 Answer : _____ # #4 Calculus - Hustle MA⊕ National Convention 2024 #### #4 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\sum_{n=2}^{10} \frac{1}{n^2 - n}$$ Evaluate: $$\sum_{n=2}^{10} \frac{1}{n^2 - n}$$ Answer : _____ Round 1 2 3 4 5 #4 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\sum_{n=2}^{10} \frac{1}{n^2 - n}$$ Answer : _____ Round 1 2 3 4 5 #4 Calculus – Hustle MA® National Convention 2024 Evaluate: $$\sum_{n=2}^{10} \frac{1}{n^2 - n}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ # #5 Calculus – Hustle MA⊕ National Convention 2024 #### #5 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\int_0^1 x^2 \sqrt{1-x} \, dx$$ Evaluate: $$\int_0^1 x^2 \sqrt{1-x} \, dx$$ Answer : _____ Round 1 2 3 4 5 #5 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\int_0^1 x^2 \sqrt{1-x} \, dx$$ Answer : _____ Round 1 2 3 4 5 #5 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\int_0^1 x^2 \sqrt{1-x} \, dx$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ # #6 Calculus – Hustle MA⊕ National Convention 2024 # If a particular solution to $$x^2 \frac{dy}{dx} + \frac{y-2}{x^3} = 0$$ contains the points (1,1) and $\left(\frac{1}{\sqrt{2}}, n\right)$, find n. | Answer | : | | |--------|---|--| |--------|---|--| #### Round 1 2 3 4 5 #### #6 Calculus - Hustle MA⊕ National Convention 2024 If a particular solution to $$x^2 \frac{dy}{dx} + \frac{y-2}{x^3} = 0$$ contains the points (1,1) and $\left(\frac{1}{\sqrt{2}}, n\right)$, find n. #### #6 Calculus – Hustle MA⊕ National Convention 2024 If a particular solution to $$x^2 \frac{dy}{dx} + \frac{y-2}{x^3} = 0$$ contains the points (1,1) and $\left(\frac{1}{\sqrt{2}}, n\right)$, find n. Answer : _____ Round 1 2 3 4 5 #### #6 Calculus - Hustle MA⊕ National Convention 2024 If a particular solution to $$x^2 \frac{dy}{dx} + \frac{y-2}{x^3} = 0$$ contains the points (1,1) and $\left(\frac{1}{\sqrt{2}}, n\right)$, find n. Answer : _____ Round 1 2 3 4 5 Answer : _____ # #7 Calculus – Hustle MA⊕ National Convention 2024 #### #7 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\lim_{x \to 1} \frac{x^3 + 5x^2 + x - 7}{x^4 - 3x^3 + x^2 + 15x - 14}$$ Evaluate: $$\lim_{x \to 1} \frac{x^3 + 5x^2 + x - 7}{x^4 - 3x^3 + x^2 + 15x - 14}$$ Answer : _____ Round 1 2 3 4 5 #7 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\lim_{x \to 1} \frac{x^3 + 5x^2 + x - 7}{x^4 - 3x^3 + x^2 + 15x - 14}$$ Answer : _____ Round 1 2 3 4 5 #7 Calculus – Hustle MA⊕ National Convention 2024 Evaluate: $$\lim_{x \to 1} \frac{x^3 + 5x^2 + x - 7}{x^4 - 3x^3 + x^2 + 15x - 14}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ # #8 Calculus - Hustle MA⊚ National Convention 2024 #### #8 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\sin\left(\int_3^4 \frac{dx}{\sqrt{25-x^2}}\right)$$ Evaluate: $$\sin\left(\int_3^4 \frac{dx}{\sqrt{25-x^2}}\right)$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #8 Calculus - Hustle MA⊚ National Convention 2024 #8 Calculus – Hustle MA© National Convention 2024 Evaluate: $$\sin\left(\int_3^4 \frac{dx}{\sqrt{25-x^2}}\right)$$ Evaluate: $$\sin\left(\int_3^4 \frac{dx}{\sqrt{25-x^2}}\right)$$ Answer : _____ Answer : _____ Round 1 2 3 4 5 # #9 Calculus - Hustle MA⊕ National Convention 2024 Find the cosine of the acute angle formed by the intersection of $y = x^3 - x - 4$ and its reflection over the line y = x. # #9 Calculus – Hustle MA⊕ National Convention 2024 Find the cosine of the acute angle formed by the intersection of $y = x^3 - x - 4$ and its reflection over the line y = x. Answer : _____ Round 1 2 3 4 5 #### #9 Calculus – Hustle MA© National Convention 2024 Find the cosine of the acute angle formed by the intersection of $y = x^3 - x - 4$ and its reflection over the line y = x. Answer : _____ Round 1 2 3 4 5 #### #9 Calculus - Hustle MA⊕ National Convention 2024 Find the cosine of the acute angle formed by the intersection of $y = x^3 - x - 4$ and its reflection over the line y = x. Answer : _____ Round 1 2 3 4 5 Answer : _____ # #10 Calculus – Hustle MA⊕ National Convention 2024 Find the sum of the integers in the interval of convergence for the series $$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n5^{n-1}}$$ # #10 Calculus - Hustle MA⊕ National Convention 2024 Find the sum of the integers in the interval of convergence for the series $$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n5^{n-1}}$$ | Answer | : | | |---------|---|--| | Allswer | : | | Round 1 2 3 4 5 #### #10 Calculus - Hustle MA© National Convention 2024 Find the sum of the integers in the interval of convergence for the series $$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n5^{n-1}}$$ Answer : _____ Round 1 2 3 4 5 #### #10 Calculus - Hustle MA⊕ National Convention 2024 Find the sum of the integers in the interval of convergence for the series $$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n5^{n-1}}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ #### #11 Calculus – Hustle MA® National Convention 2024 # Find the area above the x-axis and under the parametric curve given by $$x = t - \sin t$$ $$y = 1 - \cos t$$ for $0 \le t \le 2\pi$. #### #11 Calculus - Hustle MA⊕ National Convention 2024 Find the area above the x-axis and under the parametric curve given by $$x = t - \sin t$$ $$v = 1 - \cos t$$ for $0 \le t \le 2\pi$. Answer : ______ Round 1 2 3 4 5 #### #11 Calculus - Hustle MA⊕ National Convention 2024 Find the area above the x-axis and under the parametric curve given by $$x = t - \sin t$$ $$y = 1 - \cos t$$ for $0 \le t \le 2\pi$. Answer : _____ Round 1 2 3 4 5 #### #11 Calculus - Hustle MA⊕ National Convention 2024 Find the area above the x-axis and under the parametric curve given by $$x = t - \sin t$$ $$y = 1 - \cos t$$ for $0 \le t \le 2\pi$. Answer : ______ Round 1 2 3 4 5 Answer : _____ #### #12 Calculus – Hustle MA® National Convention 2024 The amount of water per minute dripping out of an inverted conical container with base radius 4 and height 12 is 4π units cubed per minute. When the height of the water is 4, find the number of units per minute that the height of the water is decreasing. #### #12 Calculus - Hustle MA⊕ National Convention 2024 The amount of water per minute dripping out of an inverted conical container with base radius 4 and height 12 is 4π units cubed per minute. When the height of the water is 4, find the number of units per minute that the height of the water is decreasing. | A | | |--------|--| | Answer | | | | | Round 1 2 3 4 5 #### #12 Calculus - Hustle MA⊕ National Convention 2024 The amount of water per minute dripping out of an inverted conical container with base radius 4 and height 12 is 4π units cubed per minute. When the height of the water is 4, find the number of units per minute that the height of the water is decreasing. Answer : _____ Round 1 2 3 4 5 #### #12 Calculus - Hustle MA⊕ National Convention 2024 The amount of water per minute dripping out of an inverted conical container with base radius 4 and height 12 is 4π units cubed per minute. When the height of the water is 4, find the number of units per minute that the height of the water is decreasing. Answer : ______ Round 1 2 3 4 5 Answer : _____ # #13 Calculus – Hustle MA⊕ National Convention 2024 Determine the coefficient of the x^3 term in the Maclaurin series expansion of $\frac{7}{x-1} + 24 \cos \sqrt{x}$. #### #13 Calculus - Hustle MA⊕ National Convention 2024 Determine the coefficient of the x^3 term in the Maclaurin series expansion of $\frac{7}{x-1} + 24 \cos \sqrt{x}$. Answer : _____ Round 1 2 3 4 5 #### #13 Calculus – Hustle MA⊚ National Convention 2024 Determine the coefficient of the x^3 term in the Maclaurin series expansion of $\frac{7}{x-1} + 24 \cos \sqrt{x}$. Answer : _____ Round 1 2 3 4 5 # #13 Calculus - Hustle MA® National Convention 2024 Determine the coefficient of the x^3 term in the Maclaurin series expansion of $\frac{7}{x-1} + 24 \cos \sqrt{x}$. Answer : _____ Round 1 2 3 4 5 Answer : _____ # #14 Calculus – Hustle MA⊕ National Convention 2024 The circle given by $x^2 + y^2 - 4x - 4y - 7 = 0$ is rotated about the line 4x + 3y + 6 = 0. Find the volume of the solid formed. # #14 Calculus – Hustle MA⊕ National Convention 2024 The circle given by $x^2 + y^2 - 4x - 4y - 7 = 0$ is rotated about the line 4x + 3y + 6 = 0. Find the volume of the solid formed. Answer : ______ Round 1 2 3 4 5 #### #14 Calculus - Hustle MA⊕ National Convention 2024 The circle given by $x^2 + y^2 - 4x - 4y - 7 = 0$ is rotated about the line 4x + 3y + 6 = 0. Find the volume of the solid formed. Answer : ______ Round 1 2 3 4 5 # #14 Calculus - Hustle MA® National Convention 2024 The circle given by $x^2 + y^2 - 4x - 4y - 7 = 0$ is rotated about the line 4x + 3y + 6 = 0. Find the volume of the solid formed. Answer : _____ Round 1 2 3 4 5 Answer : _____ # #15 Calculus – Hustle MA⊕ National Convention 2024 | Gwen and Rachel want to enclose 5 identical rectangular regions for their pet greyhounds with 60 meters of fence (see below diagram). What is the maximum area for one of the 5 regions ? | Gwen and Rachel want to enclose 5 identical rectangular regions for their pet greyhounds with 60 meters of fence (see below diagram). What is the maximum area for one of the 5 regions ? | | | | |--|--|--|--|--| | | | | | | | Answer : | Answer : | | | | | Round 1 2 3 4 5 | Round 1 2 3 4 5 | | | | | #15 Calculus – Hustle
MA⊕ National Convention 2024 | #15 Calculus – Hustle
MA⊕ National Convention 2024 | | | | | Gwen and Rachel want to enclose 5 identical rectangular regions for their pet greyhounds with 60 meters of fence (see below diagram). What is the maximum area for one of the 5 regions ? | Gwen and Rachel want to enclose 5 identical rectangular regions for their pet greyhounds with 60 meters of fence (see below diagram). What is the maximum area for one of the 5 regions ? | | | | | | | | | | | | | | | | Answer : _____ Answer : _____ Round 1 2 3 4 5 Round 1 2 3 4 5 **#15 Calculus - Hustle** MA® National Convention 2024 # #16 Calculus - Hustle MA⊚ National Convention 2024 #### #16 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\left(\sum_{n=0}^{\infty} \frac{(-1/3)^n}{2n+1}\right)^2$$ Evaluate: $$\left(\sum_{n=0}^{\infty} \frac{(-1/3)^n}{2n+1}\right)^2$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #16 Calculus – Hustle MA⊕ National Convention 2024 #16 Calculus - Hustle MA® National Convention 2024 Evaluate: $$\left(\sum_{n=0}^{\infty} \frac{(-1/3)^n}{2n+1}\right)^2$$ Evaluate: $$\left(\sum_{n=0}^{\infty} \frac{(-1/3)^n}{2n+1}\right)^2$$ Answer : _____ Answer : _____ Round 1 2 3 4 5 # #17 Calculus - Hustle MA⊕ National Convention 2024 #### #17 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\int_3^7 \frac{\ln(x-2)}{\ln(10x-x^2-16)} \ dx$$ Evaluate: $$\int_{3}^{7} \frac{\ln(x-2)}{\ln(10x-x^2-16)} \ dx$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #17 Calculus - Hustle MA⊕ National Convention 2024 #17 Calculus - Hustle MA© National Convention 2024 Evaluate: $$\int_{3}^{7} \frac{\ln(x-2)}{\ln(10x-x^2-16)} \ dx$$ Evaluate: $$\int_{3}^{7} \frac{\ln(x-2)}{\ln(10x-x^2-16)} \ dx$$ Answer : _____ Answer : ______ Round 1 2 3 4 5 # #18 Calculus - Hustle MA⊕ National Convention 2024 # Find the volume of the figure formed by rotating the region between y = x + 6 and the x-axis between x = 1 and x = 4 over the line y = -1. #### #18 Calculus - Hustle MA⊕ National Convention 2024 Find the volume of the figure formed by rotating the region between y = x + 6 and the x-axis between x = 1 and x = 4 over the line y = -1. Answer : _____ Round 1 2 3 4 5 #### #18 Calculus - Hustle MA⊕ National Convention 2024 Find the volume of the figure formed by rotating the region between y = x + 6 and the x-axis between x = 1 and x = 4 over the line y = -1. Answer : _____ Round 1 2 3 4 5 #### #18 Calculus - Hustle MA⊕ National Convention 2024 Find the volume of the figure formed by rotating the region between y = x + 6 and the x-axis between x = 1 and x = 4 over the line y = -1. Answer : _____ Round 1 2 3 4 5 Answer : _____ # #19 Calculus - Hustle MA⊚ National Convention 2024 Find the sum of the values of x that satisfy the Mean Value Theorem for Derivatives for the function $y = x^3 - 6x - 9$ over the range [-3,3]. #### #19 Calculus - Hustle MA⊚ National Convention 2024 Find the sum of the values of x that satisfy the Mean Value Theorem for Derivatives for the function $y = x^3 - 6x - 9$ over the range [-3,3]. Answer : _____ Round 1 2 3 4 5 #### #19 Calculus - Hustle MA⊚ National Convention 2024 Find the sum of the values of x that satisfy the Mean Value Theorem for Derivatives for the function $y = x^3 - 6x - 9$ over the range [-3,3]. Answer : _____ Round 1 2 3 4 5 #### #19 Calculus - Hustle MA⊕ National Convention 2024 Find the sum of the values of x that satisfy the Mean Value Theorem for Derivatives for the function $y = x^3 - 6x - 9$ over the range [-3,3]. Answer : _____ Round 1 2 3 4 5 Answer:____ Which is greater? (Give your answer as A or B) A) $$\frac{1}{2022} + \frac{6}{2024} + \frac{1}{2026}$$ B) $$\frac{4}{2023} + \frac{4}{2025}$$ Which is greater? (Give your answer as A or B) A) $$\frac{1}{2022} + \frac{6}{2024} + \frac{1}{2026}$$ $$B) \; \frac{4}{2023} + \frac{4}{2025}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #### #20 Calculus - Hustle MA⊕ National Convention 2024 Which is greater? (Give your answer as A or B) A) $$\frac{1}{2022} + \frac{6}{2024} + \frac{1}{2026}$$ B) $$\frac{4}{2023} + \frac{4}{2025}$$ #20 Calculus - Hustle MA⊕ National Convention 2024 Which is greater? (Give your answer as A or B) A) $$\frac{1}{2022} + \frac{6}{2024} + \frac{1}{2026}$$ B) $$\frac{4}{2023} + \frac{4}{2025}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ # #21 Calculus - Hustle MA® National Convention 2024 #### #21 Calculus - Hustle MA⊕ National Convention 2024 Evaluate: $$\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{16i}{n^2} \sqrt{16 - \left(\frac{4i}{n}\right)^2}$$ Evaluate: $$\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{16i}{n^2} \sqrt{16 - \left(\frac{4i}{n}\right)^2}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ Round 1 2 3 4 5 #21 Calculus - Hustle MA® National Convention 2024 #21 Calculus - Hustle MA® National Convention 2024 Evaluate: $$\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{16i}{n^2} \sqrt{16 - \left(\frac{4i}{n}\right)^2}$$ Evaluate: $$\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{16i}{n^2} \sqrt{16 - \left(\frac{4i}{n}\right)^2}$$ Answer : _____ Round 1 2 3 4 5 Answer : _____ | #22 Calculus - Hustle | | |---------------------------|------| | MA® National Convention 2 | 2024 | Find the length of the arc given by $r = 2e^{2\theta}$ between $\theta = \ln \pi$ and $\theta = \ln(2\pi)$. #### #22 Calculus - Hustle MA⊕ National Convention 2024 Find the length of the arc given by $r = 2e^{2\theta}$ between $\theta = \ln \pi$ and $\theta = \ln(2\pi)$. Answer : _____ Round 1 2 3 4 5 #22 Calculus - Hustle MA⊕ National Convention 2024 Find the length of the arc given by $r = 2e^{2\theta}$ between $\theta = \ln \pi$ and $\theta = \ln(2\pi)$. Answer : _____ Round 1 2 3 4 5 #22 Calculus - Hustle MA® National Convention 2024 Find the length of the arc given by $r = 2e^{2\theta}$ between $\theta = \ln \pi$ and $\theta = \ln(2\pi)$. Answer : _____ Round 1 2 3 4 5 Answer : _____ | #23 Calculus - Hustle | | |-------------------------|------| | MA@ National Convention | 2024 | #### #23 Calculus – Hustle MA® National Convention 2024 $$\int_0^{\arcsin(\pi/6)} e^{\sin(\sin x)} \sin(2\sin x) \cos x \ dx$$ $$\int_0^{\arcsin(\pi/6)} e^{\sin(\sin x)} \sin(2\sin x) \cos x \ dx$$ Answer : _____ Round 1 2 3 4 5 Answer : ______ Round 1 2 3 4 5 # #23 Calculus – Hustle MA⊕ National Convention 2024 #### #23 Calculus - Hustle MA© National Convention 2024 Evaluate: $$\int_0^{\arcsin(\pi/6)} e^{\sin(\sin x)} \sin(2\sin x) \cos x \ dx$$ #### Evaluate: $$\int_0^{\arcsin(\pi/6)} e^{\sin(\sin x)} \sin(2\sin x) \cos x \ dx$$ Answer : _____ Answer : ______ Round 1 2 3 4 5 # #24 Calculus - Hustle MA⊚ National Convention 2024 a, b, and c are positive integers such that the function $$f(x) = \begin{cases} ax^2 + bx + c, & x < 1 \\ 2cx^2 - 3ax + 2b, & x \ge 1 \end{cases}$$ is differentiable everywhere. If 5c - 3a = 30, find a + b + c. Answer : ______ Round 1 2 3 4 5 #### #24 Calculus - Hustle MA⊕ National Convention 2024 a, b, and c are positive integers such that the function $$f(x) = \begin{cases} ax^2 + bx + c, & x < 1\\ 2cx^2 - 3ax + 2b, & x \ge 1 \end{cases}$$ is differentiable everywhere. If 5c - 3a = 30, find a + b + c. #### #24 Calculus – Hustle MA⊕ National Convention 2024 a, b, and c are positive integers such that the function $$f(x) = \begin{cases} ax^2 + bx + c, & x < 1 \\ 2cx^2 - 3ax + 2b, & x \ge 1 \end{cases}$$ is differentiable everywhere. If 5c - 3a = 30, find a + b + c. Answer : _____ Round 1 2 3 4 5 #### #24 Calculus – Hustle MA⊕ National Convention 2024 a, b, and c are positive integers such that the function $$f(x) = \begin{cases} ax^2 + bx + c, & x < 1\\ 2cx^2 - 3ax + 2b, & x \ge 1 \end{cases}$$ is differentiable everywhere. If 5c - 3a = 30, find a + b + c. Answer : _____ Round 1 2 3 4 5 Answer : _____ | #25 Calculus – Hustle | | |------------------------------|------| | MAO National Convention | 2024 | Given that $\int_a^b 2x \ dx = 2023$ for positive integers a and b, find the minimum possible value of a. #### #25 Calculus – Hustle MA⊕ National Convention 2024 Given that $\int_a^b 2x \ dx = 2023$ for positive integers a and b, find the minimum possible value of a. Answer : _____ Round 1 2 3 4 5 #### #25 Calculus - Hustle MA® National Convention 2024 Given that $\int_a^b 2x \ dx = 2023$ for positive integers a and b, find the minimum possible value of a. Answer : _____ Round 1 2 3 4 5 #### #25 Calculus – Hustle MA⊕ National Convention 2024 Given that $\int_a^b 2x \ dx = 2023$ for positive integers a and b, find the minimum possible value of a. Answer : _____ Answer : _____ Round 1 2 3 4 5