-1	$-\frac{11}{12}$	$\frac{27}{10}$	<u>9</u> 10	$\frac{16}{105}$
$2-e^{3/4}$	<u>7</u> 6	<u>7</u> 25	$\frac{11}{61}$	-35
3π	<u>9</u> 4	$-\frac{211}{30}$	$120\pi^{2}$	15
$\frac{\pi^2}{12}$	2	270π	0	А
$\frac{64}{3}$	$3\pi^2\sqrt{5}$	$2 - \sqrt{e}$	25	51

1.
$$-1 \qquad \lim_{x \to \infty} \left(\sqrt{x^2 + 6x + 8} - \sqrt{x^2 + 8x + 6} \right) = \lim_{x \to \infty} \left(\sqrt{(x+3)^2 - 1} - \sqrt{(x+4)^2 - 10} \right) = \lim_{x \to \infty} \left((x+3) - (x+4) \right) = -1.$$

2.
$$-\frac{11}{12}$$
 $y(1) = \frac{1}{2} - \frac{2}{3} + 4 - 5 = -\frac{7}{6}$. The derivative is $y' = 2x^3 - 2x^2 + 4$, which at $x = 1$ equals 4. The slope normal to the function is $-\frac{1}{4}$. Solving $y + \frac{7}{6} = -\frac{1}{4}(x-1)$ gives a y-intercept of $-\frac{11}{12}$.

3.
$$\frac{27}{10}$$
 By the Product Rule, $4xy + 2x^2 \frac{dy}{dx} + 9x^2y^2 + 6x^3y \frac{dy}{dx} - 1 = 0$. Plugging in the point (1, -2) yields $-8 + 2\frac{dy}{dx} + 36 - 12\frac{dy}{dx} - 1 = 0$ and $\frac{dy}{dx} = \frac{27}{10}$.

4.
$$\frac{9}{10}$$
 By partial fractions, $\frac{1}{n^2 - n} = \frac{1}{n - 1} - \frac{1}{n}$, which telescopes. From $n = 2$ to 10, this sum is $(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{9} - \frac{1}{10}) = 1 - \frac{1}{10} = \frac{9}{10}$.

5.
$$\frac{16}{105}$$
 $u = 1 - x$ gives an integral equal to $\int_0^1 (1 - u)^2 \sqrt{u} \, du = \int_0^1 (u^{5/2} - 2u^{3/2} + u^{1/2}) \, du = \frac{2}{7} - \frac{4}{5} + \frac{2}{3} = \frac{16}{105}.$

6. 2

$$-e^{3/4}$$
 Multiplying, $x^5 \frac{dy}{dx} = 2 - y$. $\frac{dy}{2-y} = \frac{dx}{x^5}$, so integrating gives $-\ln(2-y) = -\frac{1}{4x^4} + C$, or $\ln(2-y) = \frac{1}{4x^4} - \frac{1}{4}$. Setting $x = \frac{1}{\sqrt{2}}$ gives $\ln(2-y) = \frac{3}{4}$, or $y = 2 - e^{3/4}$.

7. $\frac{7}{6}$ This is a $\frac{0}{0}$ indeterminate form, so l'Hospital's gives the limit as equaling $\lim_{x \to 1} \frac{3x^2 + 10x + 1}{4x^3 - 9x^2 + 2x + 15} = \frac{7}{6}.$

8.
$$\frac{7}{25}$$
 $\int_{3}^{4} \frac{dx}{\sqrt{25-x^2}} = \arcsin\frac{4}{5} - \arcsin\frac{3}{5} \cdot \sin\left(\arcsin\frac{4}{5} - \arcsin\frac{3}{5}\right) = \frac{4}{5} \cdot \frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5} = \frac{7}{25}$

- 9. $\frac{11}{61}$ To find the intersection, set $x^3 x 4 = x$, or $x^3 2x 4 = 0$, whose only real root is 2. The slope of the graph is $3x^2 1$, which equals 11 at x = 2. The angle between the vectors $\langle 1,11 \rangle$ and $\langle 11,1 \rangle$ can be found with $11 + 11 = \sqrt{122}\sqrt{122}\cos\theta$, or $\cos\theta = \frac{11}{61}$.
- 10. -35 The radius of convergence is 5, centered about -3, so the integers in the range [-7,1] are valid. When x = 2, this is the harmonic sequence, but when x = -8, this is the alternating harmonic sequence, so the valid integers are in the range [-8,1], and the sum of them is -35.

11.
$$3\pi \int_{0}^{2\pi} y \, dx = \int_{0}^{2\pi} (1 - \cos t)^2 \, dt = \int_{0}^{2\pi} (1 + \cos^2 t - 2\cos t) \, dt = 2\pi + \pi = 3\pi.$$

12.
$$\frac{9}{4}$$
 The height is 3 times the radius, so the volume of the cone is $\frac{1}{3}\pi r^2 h = \pi r^3$.
When $h = 4$, $r = \frac{4}{3}$. $\frac{dV}{dt} = 3\pi r^2 \frac{dr}{dt}$, so $4\pi = 3\pi \cdot \frac{16}{9} \frac{dr}{dt}$ and $\frac{dr}{dt} = \frac{3}{4}$ and $\frac{dh}{dt} = \frac{9}{4}$.

13.
$$-\frac{211}{30}$$
 $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ and $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$, so $\frac{7}{x-1} = -7 - 7x - 7x^2 - 7x^3 - \dots$ and $24 \cos \sqrt{x} = 24 - 12x + x^2 - \frac{x^3}{30} + \dots$ and the coefficient of the x^3 term in their sum is $-7 - \frac{1}{30} = -\frac{211}{30}$.

- 14. $120\pi^2$ The circle can be rewritten as $(x 2)^2 + (y 2)^2 = 15$, which has area 15π . The centroid is at the center, which is (2,2). The distance from (2,2) to the given line is $\frac{8+6+6}{\sqrt{4^2+3^2}} = 4$. By Theorem of Pappus, the volume of the rotated figure is $2\pi \cdot 4 \cdot 15\pi = 120\pi^2$.
- 15. 15 30 meters of fence must be used for the length, and 30 must be used for the width. This means a length of 15 meters and a height of 5 meters for the rectangles, which is a total area of 75 square meters, or 15 square meters per region.

16.
$$\frac{\pi^2}{12}$$
 The sum is equal to $\sum_{n=0}^{\infty} \sqrt{3} \cdot \frac{(-1)^n (1/\sqrt{3})^{2n+1}}{2n+1} = \sqrt{3} \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$. Answer is $\frac{\pi^2}{12}$.