Geometry Individual Answers and Solutions January 13, 2024 BC/AHS-PB Statewide Invitational Competition

ANSWERS:

ANOTENO.	
1. 2. 3. 4. 5.	B A
6. 7. 8. 9. 10.	C - Disputed and Changed to E D B
11. 12. 13. 14. 15.	B D C
16. 17. 18. 19. 20.	A B
21. 22. 23. 24. 25.	B D C
26. 27. 28. 29. 30.	A B A

SOLUTIONS:

- 1. <u>A.</u> $P = 5Q \cdot 90 Q = 5(90 P) \cdot 90 Q = 5(90 5Q) \cdot 24Q = 360 \cdot Q = 15 \cdot So, P = 75.$
- 2. <u>D.</u> Since $m \angle PQR = 90^{\circ}$, $m \angle TQP + m \angle RQS = 90$ and so 5x + 50 = 90. x=8.
- 3. <u>**B.</u>** 360/2 = 180 sides.</u>
- 4. <u>A.</u> Drop two heights from the endpoints of the smaller base. This creates a square and two 5 12 5 5-12-13 triangles. Perimeter = 13(2)+12+22 = 60

12

- 5. <u>C.</u> Since 90/3 = 30, $m \angle RQS = m \angle SQU = m \angle UQP = 30^{\circ}$. That gives RQ = $6\sqrt{3}$ and RS=6 and ST=9. TP= $6\sqrt{3}$. Since QP is the long leg of one of the 30-60-90 triangles, UP= $15/\sqrt{3} = 5\sqrt{3}$. That means TU = $6\sqrt{3} - 5\sqrt{3} = \sqrt{3}$. The perimeter of RQUT is $6\sqrt{3} + 1\sqrt{3} + 15 + 10\sqrt{3} = 15 + 17\sqrt{3}$ $= a + b\sqrt{c}$. So a + b + c = 15 + 17 + 3 = 35.
- 6. <u>A.</u> $m \angle U = 180 92 55 = 33$. Since TV=VU, $m \angle VTU = 33$ and $m \angle RVT = 66$.
- 7. <u>C.</u> PS is 12 so QU=12. $m \angle Q = 60$ so UR = $6\sqrt{3}$. $m \angle URN = 60$ so, UN=9. Disputed and Changed to E
- 8. <u>D.</u> $\Delta GHJ \sim \Delta GKL$ by the AA~ Postulate. $\frac{8}{x} = \frac{x+6}{x+3}$. $8x+24 = x^2+6x$. $x^2 - 2x - 24 = 0$. (x-6)(x+4) = 0. x=6.

- 9. **B.** $12^2 + 16^2 = (2x 12)^2$. $144 + 256 = 4x^2 - 48x + 144$. Divide by 4: $x^2 - 12x - 64 = 0$. (x - 16)(x + 4) = 0. x=16.
- 10. <u>**B.**</u> The angle bisector of one angle of a triangle will divide the opposite side into lengths proportional to the other two

sides: $\frac{12}{16} = \frac{x+2}{x+5}$. $\frac{3}{4} = \frac{x+2}{x+5}$. 3x+15 = 4x+8. x=7. So, perimeter of ΔRST is 12+15+9+12=49

- 11. **<u>B.</u>** The inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$. The converse of that is $\sim q \rightarrow \sim p$.
- 12. **<u>B.</u>** If you drop two heights in a manner similar to the solutions to #4, we see the longer base broken by one height, into segments 8 and 4. $10^2 + 8^2 = d^2$ for diagonal d. $d = \sqrt{164} = 2\sqrt{41}$.
- 13. **D**. The hypotenuse of a right triangle is longer than the legs, so the sides cannot be congruent; A is false. The short leg of a 30-60-90 triangle is half the length of the hypotenuse, so B is false. An equilateral triangle can have an integral length altitude if the sides are irrational. For example, let the side be $2\sqrt{3}$; C is false. D is true, if k=1.
- 14. <u>C.</u> $\Delta VRS \sim \Delta TRU$ due to the reflexive angle R and right angle at U and S. $\frac{VS}{UT} = \frac{RS}{RU} \cdot \frac{x}{3x+3} = \frac{x+1}{5x+1} \cdot \frac{3x^2+6x+3=5x^2+x}{2x^2-5x-3=0} \cdot \frac{(2x+1)(x-3)=0}{2x+3} \cdot \frac{x-3}{2x+3} \cdot \frac{x-3}{2x+3} = 0 \cdot \frac{x-3}{2x+3} = 0 \cdot \frac{x-3}{2x+3} = 0 \cdot \frac{x-3}{2x+3} = 0 \cdot \frac{x-3}{2x+3} \cdot \frac{x-3}{2x+3} = 0 \cdot \frac{x-3}{2x+3}$

- <u>D.</u> If the intersection of H and J is line
 L, then the locus described will be 4 lines parallel to L and to each other, one line in each space quadrant.
- 16. <u>A.</u> Let TC=2x and RT=x. Since M is the midpoint of \overline{TC} , TM=MC=x. Since RT=4, TM=MC=4. ΔEMC is isosceles so, ME = $4\sqrt{2}$. TE= $\sqrt{4^2 + 8^2} = 4\sqrt{5}$. The perimeter of ΔMET is $4\sqrt{5} + 4\sqrt{2} + 4 = \sqrt{80} + \sqrt{32} + \sqrt{16}$. This is $\sqrt{a} + \sqrt{b} + \sqrt{c}$, so a + b + c = 128.
- 17. <u>A.</u> Let the side length be x and the diagonal be x+12. $x+12 = x\sqrt{2}$.

$$x(\sqrt{2} - 1) = 12 \cdot x = \frac{12}{\sqrt{2} - 1} = \frac{12(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = 12\sqrt{2} + 12$$

- 18. <u>B.</u> If the mean of two angles measures is 50 then the sum of the two angle measures is 100, and so the third angle is 80. So, I is possible. The angles could be 50, 50 and 80 degrees, so I is true. The angles could be 80, 80 and 20 so IV is possible. If 30 is one of the two angle measures with a mean of 50, then the other angle is 70. But 30, 70 and 80 is not isosceles, so III is not possible. So true are I, II, IV.
- 19. <u>C.</u> 4x y = 2x + 2y. 2x = 3y. 5x + 15y = 180 from ∠*ANL* and ∠*LNE*. Divide the last equation by 5. x + 3y = 36. x + 2x = 36. x = 12. y = 8. |x - y| = 4.
- 20. <u>D.</u> If RS=ST then x=10. Side lengths are 70, 70 and 15. If RS=RT, then x is negative. Not possible as RT would be negative. If RT=ST then x=65. Side

lengths are 180, 290 and 180. This is possible. So, the shortest side can be 180 or 15. **Disputed and Thrown Out**

21. <u>A.</u> Let $m \angle RNS = x$ and $m \angle SNT = 4x$ and $m \angle TNU = 2x$.

 $m \angle RNU = ((m \angle RNS) + 60)^{\circ}$ so 7x = x + 60, x = 10, $m \angle SNT = 40$.

- 22. **B.** Let the leg lengths be x and y. x + y = 10 and xy = 24. You can guess that the numbers are 4 and 6. But ... $x^2 + 2xy + y^2 = 100$ and $x^2 + 2(24) + y^2 = 100$. $x^2 + y^2 = 52$. Since the hypotenuse has length $\sqrt{x^2 + y^2} = \sqrt{52} = 2\sqrt{13}$.
- 23. **D.** By the Triangle Inequality Theorem 4 < RT < 16. To be acute, the third side must be between $\sqrt{100-36} = 8$ and $\sqrt{100+36} = \sqrt{136}$. So, the third side can be 9, 10, 11. Three possibilities.
- 24. <u>C.</u> For I, $x^2 = 90 x$. $x^2 + x 90 = 0$. (x+10)(x-9) = 0 and if x=9, the angles are 9 and 81 degrees. Possible. For II, $x^2 = 180 - x$. $x^2 + x - 180 = 0$. $x = \frac{-1 \pm \sqrt{1 - 4(-180)}}{2} = -\frac{1}{2} \pm \frac{\sqrt{721}}{2}$. Not integral measures. Not possible. III. The sum is 720. So, 36(x)=720.and x=20. So, the angle measures can be 3x, 3x, 3x, 3x, 4x and 4x, or 108, 108, 108, 108, 144, 144. Possible. IV. A regular pentagon has angles divisible by 36. Possible. Three statements are possible.
- 25. <u>D.</u> EN = 2(NH) so $\frac{1}{3}(9x-15) = (x+15) = 2(x+15)$. x=10. FN=50 so NJ=100. NK = 30 so

Geometry Individual Answers and Solutions January 13, 2024 BC/AHS-PB Statewide Invitational Competition

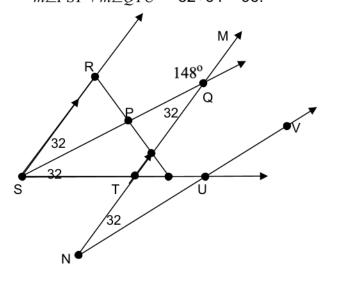
GN = 60. GK = 90. GK + FJ= 90 + 150= 240.

26. <u>**C**</u>. $\frac{12}{15} = \frac{RP}{RT - RP}$ and 3 < RT < 27Since the ratio of the

given sides is 4/5, then the third side must also be in that ratio and so let the parts be 3k and 4k. The third side must be divisible by 9 and the part RP must be divisible by 4. So out of the lengths 3 < RT < 27, 9 and 18 fit. Verify: RT=9. RP=4. If RT=18, PS=5. Side lengths are 12, 15, 9. OK. If RT=18, RP=8. PS=10. Sides of the triangle are 12, 15, 18. OK. Answer: 2 possible values.

- 27. <u>A.</u> Since SR=SV, and $m \angle RSV = 150$, $m \angle SRV = m \angle SVR = 15^{\circ}$. $m \angle RTN = 60^{\circ}$. $m \angle NRT = 60 - 15 = 45^{\circ}$. $m \angle RNT = 180 - 45 - 60 = 75^{\circ}$
- 28. **<u>B.</u>** $m \angle PQT = 32^{\circ}$. $\overrightarrow{NQ} \parallel \overrightarrow{SR}$ so

 $m \angle N = 32^{\circ}$. The two angles at S are also 32 degrees. as the sum of the remote interior angles in $\triangle STQ$. $m \angle PST + m \angle OTU = 32+64 = 96$.



29. <u>A.</u> $(PQ)^2 = (PT)(PS)$. $36 = PT \cdot 12$ and PT = 3. So, TS=9. Using similar triangles PSQ and TSR, $\frac{12}{9} = \frac{6}{TR}$. TR= $\frac{9}{2}$. Back to Geometric Mean formulas, $(TR)^2 = TS \cdot TU$. $\frac{81}{4} = (9)(TU)$ and TU = $\frac{9}{4}$. US = $9 - \frac{9}{4} = \frac{36 - 9}{4} = \frac{27}{4}$. RU = $\sqrt{\frac{27}{4} \cdot \frac{9}{4}} = \frac{9}{4}\sqrt{3}$.

30. <u>C.</u> Let 180(n-2) = 5452. Divide by 180 and we get 30 and a remainder. So n-2=30 means 32 sides is not the number of sides, but 33 may be. 180(33-2) = 5580 which is above the sum of 5452. 180(32) = 5400 degrees. The missing angle measure is 5580-5452= 128 degrees.